Network-Aware Distributed Algorithms

Nitin Vaidya
Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Acknowledgements

- Guanfeng Liang
- Lewis Tseng
- Prof. Alejandro Dominguez-Garcia
- Prof. Christoforos Hadjicostis

Work supported in part by
Puzzler
Puzzler
Puzzler

10-bit inputs

Adam

Bob

a

b
Puzzler

10-bit inputs

10 bits

Adam

Bob

b
Puzzler

10-bit inputs

Adam

Bob

Curt

\[\text{a} \]

\[\text{b} \]

\[\text{c} \]
Puzzler

10-bit inputs

Adam

Bob

Curt

20 bits
Puzzler

10-bit inputs

Can we do better than 20 bits?
Now back to the originally scheduled program ...
Network-Aware Distributed Algorithms
Distributed Algorithms & Networking

- Problems with overlapping scope
- But cultures differ
Networking

“Accurate” network models

Constants matter

Distributed Algorithms

Simple network models

Emphasis on order complexity
Networking

“Accurate” network models

Constants matter

Information transfer (typically “raw” info)

Distributed Algorithms

Simple network models

Emphasis on order complexity
Networking

“Accurate” network models

Constants matter

Information transfer (typically “raw” info)

Distributed Algorithms

Simple network models

Emphasis on order complexity

Computation affects communication
Popular Network Models

- Point-to-point graphs
- Broadcast channel
- Unit disk graph (wireless broadcast)
- SINR threshold model (wireless interference)
Unsurprising Insight

“Accurate" network models

can lead to more interesting problems
All models are wrong; some models are useful.

AND
SOME ARE JUST CUTE

-- George Box
This talk

- Example ... consensus
Consensus

- Multiple parties / agents / nodes
 - Initial input at one or more nodes

- All nodes agree in the end

- Some notion of validity for agreed value
Consensus ... Dictionary Definition

- Majority of opinion
- General agreement
Consensus
Consensus

Validity: Decide on
Consensus

Validity: Decide on ??

Majority rule
Consensus

Validity: Decide on Majority rule
Consensus

Validity: Decide on ??

Average consensus
Consensus

Validity: Decide on Average consensus
Flock of Birds (or Robots)
Flock of Birds (or Robots)

Average consensus
Many Faces of Consensus

- All nodes have non-null input / only a subset do
- No failures / failures allowed (node/link)
- Synchronous/asynchronous
- Deterministically correct / probabilistically correct
- Exact agreement / approximate agreement
- Global communication / local communication
Consensus in Practice

- Fault-tolerant file systems
- Fault-tolerant servers
- Distributed control
- Social networks
This talk

- Byzantine broadcast
- Average consensus
This talk

- Byzantine broadcast
- Average consensus
Byzantine Broadcast
Client-Server Model

Client

command A

Server

state 0
Client-Server Model

Client

command A

response (A)

state A

Server
Client-Server Model

Client

command A

Server

%*$&#
Replicated Servers

Client

Servers

command A

state 0

state 0
Replicated Servers

Client

Servers

response (A) response (A)

state A state A

%*$&#
Replicated Servers

Client

command A

command B

command C

Servers

Replication fails
Replicated Servers

Client

Servers

command A

command B

command C

Must agree on same request
Byzantine Broadcast

- Source node S broadcasts to others
- $n - 1$ other nodes
Byzantine Broadcast

Source S an input (command)

- Fault-free nodes agree on identical value
- S fault-free \Rightarrow agree on its input
- Up to f Byzantine node failures
Byzantine Fault Model

- **Nodes** may fail

- **Arbitrarily bad behavior**
 - Packet tampering
 - Packet dropping

... anything goes
Many Faces of Consensus

- All nodes have non-null input / only a subset do
- No failures / failures allowed (node/link)
- Synchronous/asynchronous
- Deterministically correct / probabilistically correct
- Exact agreement / approximate agreement
- Global communication / local communication
Byzantine Broadcast

Example algorithm [Lamport, Shostak, Pease 1982]

- 4 nodes
- At most 1 faulty node

\[n = 4 \]
\[f = 1 \]
Byzantine Broadcast

\[n = 4 \]

\[\text{input } v \]

Faulty

1

2

3
Byzantine Broadcast

\[n = 4 \]

Input: \(\mathbf{v}\)

- Node 1: Faulty
- Nodes 2 and 3: Correct

Graph:
- Node S connected to nodes 1, 2, and 3
- Edges: S to 1, S to 2, S to 3

Nodes labeled with: S (source), 1 (Faulty), 2, 3
Broadcast

input v

1 → S

2 → S

3 → S

v

v

v

v
Broadcast

input v

Diagram:

- Node S:
 - Input v
 - Edges to nodes 1, 2, 3

- Node 1:
 - Edge from S
 - Edge to 2
 - Edge to 3

- Node 2:
 - Edge from S
 - Edge to 1
 - Edge to 3

- Node 3:
 - Edge from S
 - Edge to 1
 - Edge to 2
Broadcast

input v

1 ➔ 2 ➔ 3

S ➔ 1 ➔ 2 ➔ 3

V ➔ ? ➔ ? ➔ V
Broadcast
Majority vote → Correct
Faulty

Bad source may attempt to diverge state at good nodes
Broadcast
Broadcast
Broadcast

Diagram showing a network with nodes labeled 1, 2, 3, and S. The nodes 1, 2, and 3 are connected with edges labeled v, w, and x, and each node has a label [v, w, x]. The node S is connected to nodes 1, 2, and 3 with edges labeled v, w, and x, respectively.
Broadcast

Vote identical at good nodes
Known Bounds

- $n \geq 3f + 1$ nodes to tolerate f failures
- Connectivity $\geq 2f + 1$
- $\Omega(n^2)$ messages in worst case
- $f+1$ rounds of communication
Impact of Network

Networking

Distributed Algorithms
Impact of Network

How to quantify the impact?
Metric 1:
Communication Cost per Bit

\[
\frac{\text{Total communication cost (in bits)}}{\text{Number of bits of Byzantine broadcast}}
\]
Metric 1: Communication Cost per Bit

Total communication cost (in bits) / Number of bits of Byzantine broadcast

Ignores network characteristics
Metric 2: Throughput

- Borrow notion of throughput from networking

- $b(t) = \text{number of bits agreed upon in } [0,t]$
Impact of Network

- How does the network affect Byzantine broadcast/consensus?
Consider earlier algorithm ...

- All data sent on each link once
 ➞ broadcast throughput 10

Each directed link rate = 10
Example

- broadcast throughput 10
- broadcast throughput 1

Each directed link rate = 10

All other links = 10
Point-to-Point Networks

How to best exploit available link capacity?

- Symmetric case
- Asymmetric case
Symmetric Case

Can we do better?
Symmetric Case

- "Replication" code

Can we do better?

![Diagram](image-url)
Can we do better?

- More efficient code ... standard tool in Communication
Make Common Case Fast

Two-bit value a, b

Diagram:
- Node S connected to nodes 1, 2, and 3.
 - a connects to 1.
 - b connects to 2.
 - $a+b$ connects to 3.

Nodes:
- S (root)
- 1
- 2
- 3
Make Common Case Fast

\[a, b \]

\[[a, b, a+b] \]

\[a+b \]

\[[a, b, a+b] \]

\[[a, b, a+b] \]

\[a+b \]

\[a+b \]
Make Common Case Fast

Parity check passes at all nodes \Rightarrow Agree on (a, b)
Make Common Case Fast

![Diagram]

- States:
 - S
 - 1
 - 2
 - 3

- Edges:
 - S to 1
 - 1 to S
 - 1 to 2
 - 2 to 3
 - 3 to 2
 - 2 to 1

- Labels:
 - a, b
 - a
 - b
 - a + b

- Notes:
 - a, b
Make Common Case Fast

Parity check fails at a node if A misbehaves
Make Common Case Fast

Check fails at a good node if S sends bad codeword \((a,b,z)\)
After Failure Detection

- More work required after failure detection
- But not too many times
Symmetric Case

- Per link capacity R

 ➞ Byzantine broadcast rate $(n-1-f)R$

 Optimal

$n = 4$
$f = 1$

$\Rightarrow 2R$
Arbitrary Networks

Optimal Byzantine Broadcast algorithm unknown

⇒ Throughput within constant factor
Algorithm Sketch

- Broadcast data **without** fault tolerance
Failure Detection
Failure Detection
Failure Detection
Local Coding

Each directed link can carry 1 symbol
Each node sends linear combinations of its data symbols

\[
\begin{align*}
X_2, Y_2, Z_2 & \\
X_3 + 3Y_3 + 9Z_3 & \\
X_4, Y_4, Z_4 & \\
X_3, Y_3, Z_3 & \\
\end{align*}
\]
Each node checks consistency of received packets with own data

$X_1 + 3Y_1 + 9Z_1 = X_3 + 3Y_3 + 9Z_3$?

X_1, Y_1, Z_1

X_2, Y_2, Z_2

$X_3 + 8Y_3 + 64Z_3$

X_3, Y_3, Z_3

X_4, Y_4, Z_4
Failure Detection

- Equality function

- Faulty nodes should not be able to make unequal values appear equal

- Utilize link capacities
Experimental Evaluation
Ours
Prior work
Ethernet: Failure-Free Case

Prior work, not as secure

Other prior work
Wrap-Up
This Talk

- Byzantine broadcast

- To illustrate

 impact of network

 on algorithm design & performance
Rich Problem Space

- More realism in network model can change solutions quite significantly
Rich Problem Space

- Networks ... wired, wireless
- Computations ... many of interest
- Metrics ... how to capture impact of networks?
Rich Problem Space

Need new ways to

formulate & solve

old problems
Thanks!
Can we do better than 20 bits?
Thanks!
Thanks!
Average Consensus

- Centralized solution
Iterative Average Consensus
Iterative Average Consensus

\[a = \frac{4a}{6} + \frac{b}{6} + \frac{c}{6} \]
Iterative Average Consensus

\[a = \frac{4a}{6} + \frac{b}{6} + \frac{c}{6} \]

\[d = \frac{3d}{6} + \frac{b}{6} + \frac{c}{6} + \frac{e}{6} \]
Iterative Average Consensus

\[a = \frac{4a}{6} + \frac{b}{6} + \frac{c}{6} \]
\[b = \frac{3b}{6} + \frac{a}{6} + \frac{d}{6} + \frac{e}{6} \]
\[c = \frac{4c}{6} + \frac{a}{6} + \frac{d}{6} \]
\[d = \frac{3d}{6} + \frac{b}{6} + \frac{c}{6} + \frac{e}{6} \]
\[e = \frac{3e}{6} + \frac{b}{6} + \frac{c}{6} + \frac{d}{6} \]
Iterative Average Consensus

\begin{align*}
a &= \frac{4a}{6} + \frac{b}{6} + \frac{c}{6} \\
b &= \frac{3b}{6} + \frac{a}{6} + \frac{d}{6} + \frac{e}{6} \\
c &= \frac{4c}{6} + \frac{a}{6} + \frac{d}{6} \\
d &= \frac{3d}{6} + \frac{b}{6} + \frac{c}{6} + \frac{e}{6} \\
e &= \frac{3e}{6} + \frac{b}{6} + \frac{c}{6} + \frac{d}{6}
\end{align*}
Iterative Average Consensus

\[a = \frac{4a}{6} + \frac{b}{6} + \frac{c}{6} \]
\[b = \frac{3b}{6} + \frac{a}{6} + \frac{d}{6} + \frac{e}{6} \]
\[c = \frac{4c}{6} + \frac{a}{6} + \frac{d}{6} \]
\[d = \frac{3d}{6} + \frac{b}{6} + \frac{c}{6} + \frac{e}{6} \]
\[e = \frac{3e}{6} + \frac{b}{6} + \frac{c}{6} + \frac{d}{6} \]
\[
\begin{pmatrix}
 a \\
 b \\
 c \\
 d \\
 e
\end{pmatrix} = \begin{pmatrix}
 4/6 & 1/6 & 1/6 & 0 & 0 \\
 1/6 & 3/6 & 0 & 1/6 & 1/6 \\
 1/6 & 0 & 4/6 & 1/6 & 0 \\
 0 & 1/6 & 1/6 & 3/6 & 1/6 \\
 0 & 1/6 & 0 & 1/6 & 4/6
\end{pmatrix} \begin{pmatrix}
 a \\
 b \\
 c \\
 d \\
 e
\end{pmatrix}
\]
\[
\begin{bmatrix}
a \\
b \\
c \\
d \\
e \\
\end{bmatrix} =
\begin{bmatrix}
4/6 & 1/6 & 1/6 & 0 & 0 \\
1/6 & 3/6 & 0 & 1/6 & 1/6 \\
1/6 & 0 & 4/6 & 1/6 & 0 \\
0 & 1/6 & 1/6 & 3/6 & 1/6 \\
0 & 1/6 & 0 & 1/6 & 4/6 \\
\end{bmatrix} \begin{bmatrix}
a \\
b \\
c \\
d \\
e \\
\end{bmatrix}
\]
Node B sends fractions of its mass to neighbors
\[
\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e \\
\end{bmatrix} = \begin{bmatrix}
 4/6 & 1/6 & 1/6 & 0 & 0 \\
 1/6 & 3/6 & 0 & 1/6 & 1/6 \\
 1/6 & 0 & 4/6 & 1/6 & 0 \\
 0 & 1/6 & 1/6 & 3/6 & 1/6 \\
 0 & 1/6 & 0 & 1/6 & 4/6 \\
\end{bmatrix}\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e \\
\end{bmatrix}
\]

Node B accumulates mass sent by neighbors.
Well-Known Result

- State of the nodes converges to average
- Results assuming loss-less links
\[
\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e
\end{bmatrix}
= \begin{bmatrix}
 4/6 & 1/6 & 1/6 & 0 & 0 \\
 1/6 & 3/6 & 0 & 1/6 & 1/6 \\
 1/6 & 0 & 4/6 & 1/6 & 0 \\
 0 & 1/6 & 1/6 & 3/6 & 1/6 \\
 0 & 1/6 & 0 & 1/6 & 4/6
\end{bmatrix}
\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e
\end{bmatrix}
\]
\[
\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e
\end{bmatrix} = \begin{bmatrix}
 4/6 & 1/6 & 1/6 & 0 & 0 \\
 1/6 & 3/6 & 0 & 1/6 & 1/6 \\
 1/6 & 0 & 4/6 & 1/6 & 0 \\
 0 & 1/6 & 1/6 & 3/6 & 1/6 \\
 0 & 1/6 & 0 & 1/6 & 4/6
\end{bmatrix}\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e
\end{bmatrix}
\]
Wireless Network Model

- Time varying topology
 ... mobility of nodes, links breaking, etc.

- Algorithm converges to average
 if available links are **reliable**
 and the topology is connected over time
More Accurate Model?

- Unreliable transmissions
- “Mass transfer” needs to be reliable for the algorithm to work

- B should know that A has received mass
- A should know that B knows that A has received mass
- ...
- Common knowledge required
Unreliable Links

- How to design iterative algorithms in presence of unreliable links

- Changes the problem & solution approach significantly

- Possible to converge to average
Lossy Links

- Node B may not be able to reliably transfer mass to a neighbor
Thanks!
Asymmetric Networks

- Upper bound 1 on throughput

\[\text{min-cut}(S, X \mid f \text{ peers removed}) \]

\[f = 1 \]
\[X = 1 \]
Asymmetric Networks

- Upper bound 1 on throughput

\[\min\text{-cut}(S,X \mid f \text{ peers removed}) \]
Asymmetric Networks

- Upper bound 1 on throughput

\[\text{min-cut}(S, X \mid f \text{ peers removed}) \]

\[f = 1 \]
\[X = 1 \]
Asymmetric Networks

- Upper bound 1 on throughput

\[\text{min-cut}(S, X \mid f \text{ peers removed}) \]

\[
\begin{array}{c}
S \\
\downarrow \\
\downarrow \\
1 \\
\rightarrow \\
\downarrow \\
2
\end{array}
\]

\[f = 1 \]
\[X = 1 \]
Asymmetric Networks

- Upper bound 2 on throughput

incoming($X \mid f$ nodes removed)
Asymmetric Networks

- Upper bound 2 on throughput

incoming($X \mid f$ nodes removed)

S

1

2

3

$f = 1$

$X = 1$
Asymmetric Networks

- Upper bound 2 on throughput

\[\text{incoming}(X \mid f \text{ nodes removed}) \]

\[f = 1 \]
\[X = 1 \]
Asymmetric Networks

- Upper bound 2 on throughput

incoming($X \mid f$ nodes removed)

$1 \quad 2 \quad 3$

$f = 1$
$X = 1$
4-Node Networks

- Our approach using capacity-dependent coding optimal
Arbitrary Networks

Reduction

Consensus with Byzantine fault tolerance

- Consensus with Byzantine fault detection

- Multi-party equality (with local communication)
Local Coding

- No forwarding of packets

- Code and check locally

- Desirable property when using in Byzantine broadcast ... faulty nodes cannot tamper packets, if they don't forward anything
Claims

- Bad nodes cannot tamper someone else’s packets
- If no good node finds inconsistency, their values are identical
- This equality checking helps achieve Byzantine broadcast within constant fraction of optimal
After Failure Identified

L = 30 KB, n = 4

Throughput after failure (KB/sec)

Number of requests after failure

Ours before failure