
c© 2008 Thomas Bo-Yu Shen

EXPERIMENTS ON A MULTICHANNEL MULTI-INTERFACE
WIRELESS MESH NETWORK

BY

THOMAS BO-YU SHEN

B.S., University of Illinois at Urbana-Champaign, 2006

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Adviser:

Professor Nitin Vaidya

ABSTRACT

Wireless mesh network technology provides a quick method of providing network ac-

cess. Traditional wireless mesh networks face problems regarding spatial reuse. The

simultaneous use of multiple interfaces and channels attempts to solve this problem.

Support for these multiple channels and devices has been implemented through the

Net-X system. Performance of the network depends on the amount of cross chan-

nel interference because wireless transmissions use a shared medium and interfere

with each other unless properly separated in distance and frequency. We test the

interference experienced in single, dual, and triple interface nodes.

A protocol needs to support the most common types of TCP and UDP traffic for

it to be useful. One popular type of UDP traffic is that of voice over internet (VoIP).

VoIP traffic is more demanding on a network connection, but we find that the protocol

is able to support its requirements for one and two-hop traffic. We propose a delay

reduction scheme to reduce the delay caused by the frequent channel switching.

Another method of increasing performance of the network is to utilize more in-

terfaces. The current implementation of the testbed uses two interfaces per node.

Adding a third interface will require some changes in the hybrid multichannel proto-

col. Experiments show that multihop TCP transfers benefit from this added interface.

Based on these experiments, we propose some ideas that can be used in future

multichannel work.

ii

To my family and friends

iii

ACKNOWLEDGMENTS

I would like to thank my adviser, Dr. Nitin Vaidya, for guiding me through the

research and thesis writing process. I would also like to thank my first mentor in the

group, Pradeep Kyasanur. Thanks to Vijay Raman and Cheolgi Kim for sharing their

ideas and knowledge. Thanks to Chi-Hung Lu and Robert Chang for the discussions

we had. Last but not least, thanks to my family for supporting me every step of the

way.

Research reported here is supported in part by National Science Foundation grants

04-23431 and 06-27074. Any opinions, findings, and conclusions or recommendations

expressed in this thesis are those of the author and do not necessarily reflect the views

of the National Science Foundation.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 3

CHAPTER 3 CROSS CHANNEL INTERFERENCE 5

3.1 Experimental Setup . 6
3.1.1 Hardware . 6
3.1.2 Software . 6
3.1.3 Experiment details . 6

3.2 Driver Data Rate Tests . 7
3.3 Experiments in a Typical Setting . 8
3.4 Experiments in Wireless Wind Tunnel 14
3.5 Multiple Interfaces . 16

3.5.1 Two interfaces . 16
3.5.2 Three interfaces . 18

3.6 Summary . 21

CHAPTER 4 VOIP ON NET-X . 23

4.1 VoIP Requirements . 23
4.2 Experimental Setup . 24

4.2.1 Traffic characteristics . 24
4.2.2 Calculating delay . 25

4.3 Results . 26
4.3.1 One-hop results . 26
4.3.2 Two-hop results . 27

4.4 Reducing the Delay . 29
4.5 Delay Reduction Scheme . 30
4.6 Summary . 34
4.7 Graphs of Delay Results . 35

CHAPTER 5 SUPPORT FOR MULTIPLE INTERFACES 43

5.1 Previous Work . 43
5.2 Implementation Issues . 44
5.3 Setup . 46
5.4 TCP Results . 47
5.5 UDP Results . 48
5.6 Summary . 49

v

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 50

6.1 Future Work . 51
6.1.1 Cross channel interference . 51
6.1.2 Switching delay . 51
6.1.3 Minimum channel time . 51
6.1.4 Routing . 51
6.1.5 Multiple interfaces . 52

REFERENCES . 53

vi

CHAPTER 1

INTRODUCTION

Over the years, wireless internet access has become more and more popular, with

wireless access points popping up everywhere. Wireless mesh technology is also be-

coming more popular as a cost-effective means of providing wireless access. In a

wireless mesh, intermediate nodes are crucial in providing access to end nodes. This

is similar to the ad-hoc mode in 802.11, but usually refers to a larger scale network

like a neighborhood or community.

The demands we place on an internet connection continue to increase with users

expecting to use voice over IP and watch internet TV. Development in new wireless

protocols like 802.11n makes it possible to meet the continuously rising demands of

users. Another solution is to use existing technology in parallel to increase perfor-

mance. There are multiple frequency channels in 802.11a and 802.11b that can be

utilized simultaneously to improve performance. System support for the use of mul-

tiple frequencies and channels is provided by the Net-X framework which has been

developed by previous members of the Wireless Networking Group at the University

of Illinois [1]. Details about the current Net-X system that are necessary for following

the discussion can be found in Chapter 2.

Utilizing multiple interfaces and channels may not always result in better per-

formance. Great care must be taken in selecting channels to use as cross channel

interference undermines performance. Chapter 3 of this thesis will investigate the ef-

fects of interference from transmitters on other channels. Cross channel interference

of multiple transmitters and receivers located in close proximity is also investigated

1

to determine the suitability of a multiple interface system. A set of experiments is

also performed in an anechoic chamber. The performance of real traffic will be one

of the factors that determines the usability of a protocol. Chapter 4 tests the per-

formance of voice-over-IP (VoIP) on the testbed and proposes a method of reducing

the delay. In Chapter 5, we discuss implementation issues of adding a third interface.

Experiments to test the benefits of the third interface are also carried out. Lastly,

Chapter 6 includes concluding remarks and ideas for the future.

2

CHAPTER 2

BACKGROUND

The results in this paper are from working on a unique multichannel multi-interface

testbed (Net-X) implemented by the Wireless Networking Group at the University

of Illinois-Urbana Champaign. To help the reader better understand the rest of the

thesis, a summary of the relevant aspects of the testbed follows.

Multiple Interfaces: The number of interfaces physically limits the number of

transmissions and receptions that can take place simultaneously. By increasing the

number of interfaces, we increase the upper bound on the capacity of the network [2].

As expected, the number of interfaces cannot be increased arbitrarily high as hardware

limitations (expansion slots, CPU, power) and the number of wireless channels will be

limiting factors. Additionally, the financial cost of adding extra interfaces may be too

high, although the price has certainly come down in recent years and made multiple

interface devices more feasible. Two wireless interfaces are used in the current Net-X

implementation.

Multiple Channels: Wireless devices share the wireless medium in which they

communicate. Multiple channels are needed for multiple interfaces to transmit si-

multaneously. Depending on the country, there can be up to 14 channels available in

802.11b/g and 13 channels in 802.11a. There is often cross interference on neighboring

channels. Adya et al. [3] found that the number of orthogonal channels depends on

the model/vendor of the wireless interface as well as the physical separation between

the interfaces. Through experimentation, Chereddi found five orthogonal channels in

802.11a [1]. Five channels are used in the current Net-X testbed.

3

Hybrid Multichannel Protocol: A hybrid multichannel protocol (HMCP), as

proposed in [4, 5], makes it possible for a network of N-interface devices to make use of

M wireless channels. In our network, N=2 and M=5. One of the interfaces is fixed on

a channel for a relatively long time while the other interface is deemed “switchable,”

switching channels to communicate with neighboring nodes. To amortize the cost of

switching channels, which takes 5 ms, the switchable interface will spend a minimum

of 20 ms on a channel. When there are packets waiting on other channels, the interface

will spend a maximum time of 60 ms + five deferrals of 10 ms each before forcing a

switch. The HMCP is also responsible for notifying the kernel of any changes to the

routing tables.

Hello Message System: The Hello Message Subsystem is required by the HMCP

to establish connectivity. Nodes exchange messages at fixed intervals to keep their

neighbors up to date on their status. The fixed interface of a node may change if

the network conditions dictate that a change is necessary. This allows the network

to update and rebalance itself. To exchange this information, the node sends out a

message on all possible channels. Currently, the fixed interval is set to 5 s.

Routing Protocol: The routing protocol currently used on the Net-X testbed is a

modified version of Weighted Cumulative Expected Transmission Time (WCETT) [6].

This is a reactive protocol that attempts to find a lowest cost path according to ex-

pected transmission time and channel diversity. Modifications were made by Kyasa-

nur to select channel diverse paths [2].

Further details about the Net-X system, links to papers, and source code can be

found at http://www.crhc.uiuc.edu/wireless/netx.html.

4

CHAPTER 3

CROSS CHANNEL INTERFERENCE

To increase throughput and spatial reuse, a multichannel network receives and trans-

mits on multiple channels. There are 12 802.11a channels sanctioned by the FCC

for use in the USA. Each channel is 20 MHz wide and centered 20 MHz apart. In

practice, Chen et al. found that there is often signal leakage between adjacent chan-

nels causing interference [7]. They verified that the amount of signal leakage into

neighboring channels conforms with IEEE 802.11a standards. The IEEE standard

on high-speed physical layer design in the 5 GHz band [8] shows on page 29, Figure

120, that signal power 11 MHz from the center frequency is to be 20 dB lower than

the signal at the center and 28 dB lower at 20 MHz away. While the authors in [7]

have shown there is interference caused between two co-located antennas, we have

also seen the interference problem in interfaces placed 10 feet apart.

We would like to determine the extent of this interference through experiments.

Although the results will be dependent on the specific wireless interface as well as

antenna used, we believe the general characteristics of all wireless cards with the

same chipset will be similar. The disparity between interfaces is due to each vendor

implementing different filters for the transmit mask. The results of these experiments

will aid in the selection of channels to use in a multichannel network. Then we extend

the experiments to two and three interfaces, since the extra interference of the added

interfaces may prevent some channel combinations from being used.

5

3.1 Experimental Setup

3.1.1 Hardware

We utilize the Soekris net4521 mainboard to run version 41 of Pebble Linux. The

mini-PCI slot is populated with a SL-5354MP ARIES wireless 802.11a/b/g card that

uses the Atheros AR5212A chip. Tests with one PCMCIA card are carried out using

a Senao multiband card. When running two and three interface tests, we use the

Senao PCMCIA cards along with the ARIES mini-PCI.

3.1.2 Software

The modified version of madwifi used in Net-X is also used in these experiments.

We also tried the latest version 0.9.4 of the madwifi driver but found the results to

be very inconsistent in certain simulations. The advantage of using the new version

is the ability to change the multicast rate so that the interference can be tested at

higher data rates.

We use iperf to send packets at a desired rate. The reason for using multicast

packets is to avoid the retransmission of unacknowledged data packets in the 802.11

medium access control layer. By avoiding the automatic retransmissions, we get to

see exactly how many times a transmission is successful. Unicast transmissions are

also carried out to see the effect of having to acknowledge the data. Ultimately, most

applications will utilize unicast transmissions and it is important to see if unicast

performs well.

3.1.3 Experiment details

Three nodes are placed in a line, approximately 10 feet from each other as in Fig-

ure 3.1. Each node is within line of sight of the next. Node A at one end transmits

6

packets to multicast address 224.0.0.1, of which node C is a member. Meanwhile,

node B in the middle will transmit packets to multicast address 224.0.0.2. There

is no node listening on the 224.0.0.2 multicast address because the purpose of this

transmission is to create interference. While the main transmission will have a load

at the full rate of the connection, the interfering transmission will have a variable

load to measure its effect on the main transmission. The channel of the interfering

transmission will also be varied between two channels below and two channels above

the channel of the main transmission.

���� � ���� � ���� ���	
��
�
��
���������
��	
��
�
�����
�
�
�� ��
���������

�� ���
 �� ���

Figure 3.1 Node placement

The transmit power setting is set using iwconfig to be 99 mW for all of the

experiments unless otherwise stated. This is the highest setting allowed. (Note:

There were many difficulties encountered when setting the transmit power, rate, and

ad-hoc mode. We found that writing the settings in a script executed at startup time

provided the most consistent and reliable results.)

3.2 Driver Data Rate Tests

First, we conducted tests to find the maximum throughput for unicast and multicast

traffic in the absence of interfering traffic from node B. As expected, the multicast

throughput was slightly higher than the unicast throughput (5.53 Mbps vs. 5.37

7

Mbps). Multicast packets are similar to broadcast packets in that there is no ac-

knowledgment. This translates to more time to transmit data packets, resulting in

higher throughput. In the presence of interference, a given multicast packet will not

reach its destination because there is no automatic retransmission.

Next, we tried the newer version of madwifi to test for any performance improve-

ments and the ability to change the multicast rate. The unicast throughput for all

data rates is reasonable as seen in column two of Table 3.1. However, the multicast

throughput for 24, 36, and 54 Mbps data rates seems to be throttled down to the

18 Mbps rate. Numerous trials were repeated but were unsuccessful in achieving a

higher throughput. Thus, we suspect either the driver or the card has been limited

to a maximum of 18 Mbps when in broadcast/multicast mode. In the end, we tested

only with the Net-X version of madwifi and fixed the data rate to 6 Mbps as in row

two of Table 3.1.

Table 3.1 Data rate throughput tests

Data Rate Unicast Throughput (Mbps) Multicast Throughput (Mbps)
6 Mbps (Net-X) 5.34 5.53

6 Mbps 5.37 5.53
9 Mbps 8.10 8.23
12 Mbps 10.47 10.65
18 Mbps 15.02 15.54
24 Mbps 19.30 14.09
36 Mbps 18.80 14.12
54 Mbps 21.56 14.56

3.3 Experiments in a Typical Setting

These tests are performed in an office in the Coordinated Science Laboratory. The

Coordinated Science Laboratory provides wireless internet connectivity through a

8

802.11b/g network. There is no other known 802.11a network in use. However, this

is an office environment where there may be cordless telephones using the 5 GHz

spectrum. Thankfully, we are not using 802.11b/g in the 2.4 GHz band which is also

susceptible to interference from microwave ovens. This location would be one of the

possible deployment settings of a multichannel network.

The first tests are carried out with the mini-PCI card. The multicast results

in CSL are displayed in Figure 3.2. The main transmission is on channel 36 in

Figure 3.2(a) and the load is 6 Mbps. When the interfering transmission is also

on the same channel 36, the throughput of the main transmission goes down an

amount approximately equal to the interference load. When both loads are set to be

6 Mbps, the throughput is approximately half of the case without interference which

is expected because the two are sharing the channel equally. Switching the interfering

transmission to the adjacent channel (40) yields similar throughput at interference

load rates up to 3 Mbps. However, fully loading the interfering transmission at 6 Mbps

shows approximately 18 times worse performance compared to when the transmission

is on the same channel. We see a similar trend on channels 40 (Figure 3.2(b) and

44 (Figure 3.2(c) and 48 (Figure 3.2(d). Previous work by Chereddi has surmised

that this is due to the carrier sensing mechanism’s ability to sense and thus defer

transmission when the interference is on the same channel, but not when on the

adjacent channel [1].

To test this hypothesis, we recorded the number of packets that ifconfig reports

to have been transmitted by node A. The results of this are plotted in Figure 3.3.

Notice that when the interference is on the same channel, there are fewer attempted

transmissions by node A. Moving the interference to the adjacent channel results in

the same number of attempted transmissions as when there is no interference. The

802.11 MAC layer is not deferring in the face of adjacent channel interference. Two

interfaces on adjacent channels are both flooding the network and causing collisions,

9

36 40 44 48
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 36, in CSL

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(a) Channel 36

36 40 44 48 52
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 40, in CSL

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(b) Channel 40

36 40 44 48 52 56
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 44, in CSL

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(c) Channel 44

36 40 44 48 52 56 60
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 48, in CSL

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(d) Channel 48

Figure 3.2 Throughput with interfering transmission in CSL (mini-PCI)

resulting in poor throughput for both. This supports Chereddi’s hypothesis and ex-

plains why adjacent channel interference can be more detrimental than same channel

interference.

The same tests were repeated using unicast traffic for the main transmission.

Unicast packets are retransmitted up to seven times when no MAC level ACK is

received. The interference caused by the interfering transmission will not only prevent

the data from arriving, but will also interfere with the MAC ACK and thus cause

unnecessary retransmissions. Unicast results were similar to multicast results.

10

36 40 44 48
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Packets Transmitted vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 36, in CSL

Channel of Interfering Transmission

P
ac

ke
ts

 T
ra

ns
m

itt
ed

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(a) Channel 36

36 40 44 48 52
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Packets Transmitted vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 40, in CSL

Channel of Interfering Transmission

P
ac

ke
ts

 T
ra

ns
m

itt
ed

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(b) Channel 40

36 40 44 48 52 56
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Packets Transmitted vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 44, in CSL

Channel of Interfering Transmission

P
ac

ke
ts

 T
ra

ns
m

itt
ed

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(c) Channel 44

36 40 44 48 52 56 60
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Packets Transmitted vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 48, in CSL

Channel of Interfering Transmission

P
ac

ke
ts

 T
ra

ns
m

itt
ed

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(d) Channel 48

Figure 3.3 Packets transmitted with interfering transmission in CSL (mini-PCI)

Our testbed also includes a variety of PCMCIA wireless cards. Testing each

type of card would be too time consuming, so we chose the Senao cards that are

used in our testbed. We ran the same experiments as before but changed all the

interfaces to PCMCIA cards and found the results to be different from the mini-

PCI results. The throughput results for multicast traffic from node A using only

PCMCIA are displayed in Figure 3.4. The amount of interference when on the same

channel is comparable to results with a mini-PCI interface, but the adjacent channel

interference is drastically different. Referring back to Figure 3.2, we see that the

11

36 40 44 48
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 36, in CSL

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(a) Channel 36

36 40 44 48 52
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 40, in CSL

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(b) Channel 40

36 40 44 48 52 56
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 44, in CSL

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(c) Channel 44

36 40 44 48 52 56 60
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 48, in CSL

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(d) Channel 48

Figure 3.4 Throughput with interfering transmission in CSL (PCMCIA)

throughput is less than 500 kbps for the mini-PCI interface while the throughput is

almost 3 Mbps for the PCMCIA interface. The sent packet graphs in Figure 3.5 show

that these PCMCIA cards are deferring transmission for adjacent channels. This

could mean the transmission filters are not as good, allowing higher signal leakage

and/or there is higher gain due to the different antennas being used. Interestingly,

Figure 3.4(b) shows that there is some interference when the main transmission is on

channel 40 while the interferer is on channel 48. This was the only test case in which

transmitting on a nonadjacent channel had a noticeable impact. Notice that the sent

12

packet graphs in Figure 3.5 look almost identical to Figure 3.4, suggesting that the

transmission success rate is more consistent and that the deferral is succeeding in

sharing access to the channel.

36 40 44 48
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Packets Transmitted vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 36, in CSL

Channel of Interfering Transmission

P
ac

ke
ts

 T
ra

ns
m

itt
ed

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(a) Channel 36

36 40 44 48 52
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Packets Transmitted vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 40, in CSL

Channel of Interfering Transmission

P
ac

ke
ts

 T
ra

ns
m

itt
ed

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(b) Channel 40

36 40 44 48 52 56
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Packets Transmitted vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 44, in CSL

Channel of Interfering Transmission

P
ac

ke
ts

 T
ra

ns
m

itt
ed

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(c) Channel 44

36 40 44 48 52 56 60
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Packets Transmitted vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 48, in CSL

Channel of Interfering Transmission

P
ac

ke
ts

 T
ra

ns
m

itt
ed

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(d) Channel 48

Figure 3.5 Packets transmitted with interfering transmission in CSL (PCMCIA)

One way to mitigate adjacent channel interference is to lower the carrier sense

threshold so that the interfaces can sense the leakage from other channels. Imple-

menting this requires changes in the hardware abstraction layer, which is proprietary.

There are other open source drivers which might provide this function, but we leave

that for future work. We currently avoid adjacent channel interference in Net-X by

13

selecting nonadjacent channels. To further reduce the chance of interference, we use

channels that are at least three channels away.

3.4 Experiments in Wireless Wind Tunnel

The completion of the Illinois Wireless Wind Tunnel (iWWT) allowed us to complete

some of our experiments in a controlled environment [9]. The iWWT is an anechoic

chamber so there is little interference from external sources. This is important because

we do not want other sources of interference in the 5 GHz band in which we are testing.

Furthermore, the walls of the iWWT are lined with absorbing foam that do not reflect

much energy, reducing the effect of multipath fading. The results of these experiments

will also help determine the applicability of performing experiments in the iWWT.

Our time in the chamber was limited, so we chose a subset of the experiments

performed in the previous section. The mini-PCI cards with external antennas pro-

vided inconsistent data from day-to-day. This seemed to be due to the orientation of

the antenna and the pig-tail connectors. Merely placing a hand above the antenna

or standing behind the node could help establish connectivity, whereas before there

was no connectivity. We decided to reduce the number of factors by working with the

Senao PCMCIA cards which do not require an external antenna. We also reduced

testing to the adjacent channel.

The throughput results in Figure 3.6 for the PCMCIA card in the wind tunnel

look similar to the results from the mini-PCI experiments in CSL (Figure 3.2) and

actually contrast with results of the same PCMCIA hardware in CSL. The attempted

transmissions data show that the interface failed to defer when the interference was

on adjacent channels, causing the throughput to be poor. A possible explanation for

this is the lower ambient noise in the wind tunnel as well as the lack of multipath

fading contributing to the received power. In turn, this smaller received power is

14

lower than the carrier sense threshold, so the interface does not defer. Ironically, we

want the received noise power to be higher so that it correctly defers.

36 40
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 36, in Wind Tunnel

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(a) Channel 36

36 40 44
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 40, in Wind Tunnel

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(b) Channel 40

40 44 48
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 44, in Wind Tunnel

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(c) Channel 44

44 48 52
0

1

2

3

4

5

6

Throughput vs Channel of Interfering Transmission
Main Multicast Transmission on Channel 48, in Wind Tunnel

Channel of Interfering Transmission

T
hr

ou
gh

pu
t (

M
bp

s)

0.5
1
1.5
2
2.5
3
6

Load of Interfering
Transmission (Mbps)

(d) Channel 48

Figure 3.6 Throughput with interfering transmission in wind tunnel (PCMCIA)

Testing in the wind tunnel provided a controlled environment where it was guar-

anteed that no outside interference would affect the data. However, in our case, the

data from the wind tunnel did not match with data gathered outside in a real world

environment.

15

3.5 Multiple Interfaces

3.5.1 Two interfaces

Data presented in the previous sections suggests that it is possible to successfully

transmit on two different interfaces at the maximum power level if they are not on

adjacent channels and if they are separated by a distance of 10 feet. A multichan-

nel multi-interface implementation will require the ability to simultaneously send

and receive on separate channels from closely located interfaces. Previous work by

Chereddi [1] has shown that when using two interfaces (one for reception and one for

transmission), the channels utilized need to be at least three channels away for there

to be no interference. One possible set of channels in 802.11a is {36, 48, 64, 149,

161}. Chereddi used a flooding broadcast ping as the interference and measured the

throughput of the main transmission. We tried this method but found there to be

little interference. Instead, we used iperf for both the main transmission and the

interfering transmissions.

As Chereddi has pointed out previously, utilizing one transmitter and one receiver

at the same node creates the most interference due to the high signal power of the

transmitter interfering with the low signal power at the receiver. The setup of the

nodes is displayed in Figure 3.7. Interface 1 is a mini-PCI card while interface 2 is a

Senao PCMCIA card. The channel set was chosen from the channels that were deemed

usable on our current Net-X testbed: {36, 48, 64, 149, 161}. Unicast transmission is

used instead of multicast because there is no longer any need to measure the number

of packets transmitted. The results of this test are displayed in Table 3.2 with the

following color coding:

16

white Multiple use of the same channel

light grey Aggregate throughput x ≥ 10Mbps

medium gray Aggregate throughput x, 8Mbps ≤ x < 10Mbps

dark gray Aggregate throughput x < 8Mbps

� ���� ! "#$% &'()*+,-.* � ���� �! ���� !"#$% /'()*+,-.* � ���� �!"#$% 0'()*+,-.*1-+2-34*567*+ 829: 567*+
Figure 3.7 Two interface configuration

Table 3.2 Aggregate throughput (Mbps) of two transmissions

Channel 1
Channel 36 48 64 149 161

C
h
an

n
el

2 36 5.37 9.94 10.69 10.69 10.69
48 10.66 5.32 10.69 10.69 10.68
64 10.69 10.69 5.35 10.69 10.70
149 10.70 10.69 10.70 5.37 10.67
161 10.70 10.70 10.70 10.70 5.37

When both interfaces utilize the same channel, they will have to share the channel

and the aggregate throughput will be limited to around 5.37 Mbps. This can be seen

on the downward diagonal. The only channel combination that exhibits a noticeable

amount of interference is {48, 36}. (Note: It is not expected that {36, 48} will also

exhibit the same amount of interference because the two interfaces are different.) To

further explore the relation between transmit power and interference, the transmit

power of node A is set to 1 mW. This is in some ways similar to increasing the

distance between two nodes because the received signal power will be decreased.

This will decrease the SINR and possibly affect the throughput. The low transmit

17

power results are shown in Table 3.3. At low power, there continues to be interference

between channels 36 and 48. Channels 149 and 161 now exhibit interference as well,

but not before in Table 3.2. This information must be taken into account when

planning the locations of the nodes to ensure that these channels do no interfere with

each other.

Table 3.3 Aggregate throughput (Mbps) of two transmissions using low power

Channel 1
Channel 36 48 64 149 161

C
h
an

n
el

2 36 5.38 9.76 10.70 10.70 10.70
48 9.97 5.38 10.67 10.69 10.69
64 10.70 10.69 5.39 10.70 10.70
149 10.69 10.68 10.69 5.32 6.60
161 10.60 10.57 10.59 6.96 5.33

3.5.2 Three interfaces

The number of interfaces per node is increased to three, of which two are sending

and one receiving at node B. The SINR will decrease due to the added interference of

the third interface. This may cause other pairs or triplets of channels to be unusable.

The channel and transmission configuration is displayed in Figure 3.8.

; <=>? @A@ <=>? ;ABCDE FGHIJKLMNJ
O ; <=>? ;A@ <=>? @ABCDE PGHIJKLMNJ

O <=>? OA ;@ <=>? OABCDE QGHIJKLMNJ
ORSTU VWXJKRSTU VWXJK RSTU VWXJK

Figure 3.8 Three interface configuration

18

The data is split into different tables according to the channel of interface 1.

Tables 3.4-3.8 are for interface 1 on channel 36, 48, 64, 149, and 161. Each channel is

capable of approximately 5.37 Mbps of throughput when used individually. Aggregate

throughput of 16 Mbps is necessary to show true orthogonality, but we slightly relax

this requirement to 15 Mbps. A color coding scheme similar to that used in two

interfaces is used:

white Multiple use of the same channel

light grey Aggregate throughput x ≥ 15Mbps

medium gray Aggregate throughput x, 13Mbps ≤ x < 15Mbps

dark gray Aggregate throughput x < 13Mbps

Cases where interface 2 and 3 are using the same channel are in the downward right

diagonal. The row and column corresponding to the channel of interface 1 are also

cases where reduced throughput is expected. There are 12 cases in each table where

there might be full utilization of three different channels. The interference seen when

using two interfaces on {36, 48} and {149, 161} continues to be a problem: every

combination of these channels yields less than ideal throughput. The number of cases

where the throughput is ≥ 15 Mbps is 6, 4, 8, 8, and 6 out of 12 for each of the

Tables 3.4-3.8, respectively. This means that about half of the channel combinations

have noticeable interference.

Table 3.4 Aggregate throughput of three transmissions (interface 1 on channel 36)

36 Channel 2
Channel 36 48 64 149 161

C
h
an

n
el

3 36 5.45 7.11 9.99 10.7 10.74
48 10.67 8.77 13.66 16.00 16.02
64 10.61 12.60 10.73 16.02 16.03
149 10.66 12.32 15.97 10.65 10.86
161 10.71 12.29 15.85 10.88 10.72

19

Table 3.5 Aggregate throughput of three transmissions (interface 1 on channel 48)

48 Channel 2
Channel 36 48 64 149 161

C
h
an

n
el

3 36 10.71 10.6 12.02 13.62 13.57
48 10.37 5.73 10.32 10.99 10.97
64 10.90 10.74 10.70 16.03 16.02
149 12.50 10.85 15.71 10.65 10.86
161 12.14 10.85 15.94 10.87 11.15

Table 3.6 Aggregate throughput of three transmissions (interface 1 on channel 64)

64 Channel 2
Channel 36 48 64 149 161

C
h
an

n
el

3 36 10.71 10.91 10.88 16.00 16.03
48 11.20 10.87 10.84 16.02 16.03
64 10.86 10.49 5.55 10.91 10.85
149 15.97 16.03 10.78 10.62 10.87
161 15.97 16.00 10.78 11.18 10.72

Table 3.7 Aggregate throughput of three transmissions (interface 1 on channel 149)

149 Channel 2
Channel 36 48 64 149 161

C
h
an

n
el

3 36 10.72 11.05 15.03 10.69 16.02
48 11.50 10.82 14.42 10.71 15.92
64 15.17 12.62 10.74 10.47 15.98
149 10.96 10.93 10.96 5.49 10.20
161 15.99 15.99 15.91 10.58 10.70

Choosing three channels from a set of five yields ten combinations. Only two

of these combinations {36, 64, 149} and {36, 64, 161} yielded little to no interfer-

ence as seen in Table 3.9. This ultimately means that there are only three 802.11a

channels that can be used simultaneously in a three interface node to ensure close to

interference-free operation.

20

Table 3.8 Aggregate throughput of three transmissions (interface 1 on channel 161)

161 Channel 2
Channel 36 48 64 149 161

C
h
an

n
el

3 36 10.70 11.19 14.99 15.80 10.67
48 11.54 10.89 14.66 16.02 10.67
64 14.93 13.40 10.74 16.00 10.67
149 15.92 16.03 15.86 10.60 10.65
161 10.87 10.93 10.86 10.18 5.35

Table 3.9 Interference check of channel combinations when using three interfaces

Channel Table Little/No
Combination 3.4 3.5 3.6 3.7 3.8 Interference
{36,48,64} x x x x x x
{36,48,149} x X x x x x
{36,48,161} X x x x x x
{36,64,149} X X X X X X X

{36,64,161} X X X X X* X* X

{36,149,161} x x X X X X

{48,64,149} X X X X x x
{48,64,161} X X X X x x
{48,149,161} x x X X X X

{64,149,161} x x X X X X

X: Throughput ≥ 15 Mbps X* : Throughput ≥ 14.9 Mbps
x : Throughput < 14.9 Mbps

3.6 Summary

The mini-PCI interfaces exhibited severe adjacent channel interference in our office

while the PCMCIA interfaces did not. Adjacent channel interference on the PCMCIA

interface was not as bad as same channel interference. The packets transmitted tell us

that the mini-PCI was not deferring transmission while the PCMCIA deferred. This

explains why adjacent channel interference results in poor performance and verifies

what Chereddi suspected [1]. Tests in the wireless wind tunnel yielded different

results, showing that the environment also makes a big difference.

21

Tests with two interfaces show that channels {36, 48} and {149, 161} interfere

with each other. Further tests with three interfaces in each node show that in order

to achieve 90% of maximum throughput, only channels {36, 64, 149} or {36, 64, 161}

can be used simultaneously.

22

CHAPTER 4

VOIP ON NET-X

With the advent of faster internet connections, real-time multimedia applications on

the internet are gaining popularity as a means of communicating with people all over

the world. Two popular forms of real-time multimedia applications on the internet

are voice-over-IP (VoIP) and internet TV. VoIP enables voice calls to be made around

the world to anyone with a computer and internet connection. Internet TV allows

the user to watch live TV on a computer, eliminating the need for cable service.

The public has readily embraced VoIP as we have seen with the popularity of Skype.

In this chapter, we will focus on VoIP and determine the suitability of the Net-X

framework in meeting the needs of VoIP.

4.1 VoIP Requirements

The public switched telephone network (PSTN) is known to be quite reliable. It is

rare for a call to be dropped and you do not have to worry about your telephone

connection being too slow. Unfortunately, the success of VoIP depends not only on

having an internet connection, but also on the characteristics of that connection.

Unlike web browsing, real-time applications have specific deadlines to meet. The

ultimate determination of call quality is subjective and depends on the user.

The International Telecommunication Union (ITU) defines a standard detailing

the requirements of a data connection to ensure a high quality voice call. ITU-T

G.114 recommends that the one-way delay not exceed 150 ms [10]. For international

23

calls, delays up to 400 ms are acceptable. This recommendation is a mouth-to-ear

delay which includes time to record, encode, transmit, receive, decode, and play

the audio. Other factors include packetization, queuing, and delay due to the jitter

buffer. Goode provides a sample “delay budget,” breaking down the various factors

that contribute to the delay, and finds that it can take 120 ms for these other factors,

leaving approximately 30 ms of delay for the backbone network [11].

VoIP is usually implemented over the user datagram protocol (UDP) which does

not guarantee that a packet will arrive at the destination. This is in contrast to

the transmission control protocol (TCP) that provides reliable in-order delivery of

packets. While the reliability feature of TCP is nice, it is often unnecessary for real

time applications. Losing a small snippet of voice or a couple packets of a video stream

does not seriously affect the result. Having to retransmit as in TCP may also force

the call to be paused, which makes the phone call seem half-duplex. Various forms of

packet loss concealment are employed to mitigate the effects of isolated packet losses.

In general, a loss rate of up to 4% can still be of acceptable quality [12].

Thus we wish to see experimentally if the following two criteria are met:

1. Delay ≤ 30 ms

2. Loss rate ≤ 4%

4.2 Experimental Setup

4.2.1 Traffic characteristics

VoIP is a broad term that refers to any type of voice call placed over a packet switched

network. The difference in quality among the different types of VoIP offered by

different companies is primarily due to the choice of audio codec. There are many free

and proprietary audio codecs with which to encode the audio. More advanced codecs

24

have features such as packet loss concealment and voice activity detection. Packet

loss concealment attempts to conceal the loss of packets to the user by replacing the

lost packet(s) with the last packet or attempting to interpolate the values of the last

packet. Voice activity detection is a technique where no packets are sent during silent

periods.

One of the oldest and most popular audio codecs is the G.711 codec. The G.711

codec uses pulse code modulation and either A-law or µ-law encoding [13]. No com-

pression is utilized in this codec, meaning that its bandwidth requirement is greater

than that of others. We choose to emulate a standard G.711 codec that operates at 64

kbps, with 10 ms of audio data in each packet. This type of traffic is generated by the

Distributed-Internet Traffic Generator (D-ITG) [14]. D-ITG is a traffic generation

tool that is capable of logging the sending and receiving time of a packet. Through

this feature, we are able to calculate the one-way delay of the packets. We simulated

a 60 s VoIP phone call using D-ITG. Each experiment was averaged over five trials.

4.2.2 Calculating delay

To calculate the one-way delay in our testbed, it was necessary to synchronize the

clocks of all our systems. The Soekris net4521 boards on which the system is im-

plemented utilize a nonstandard crystal frequency, causing the clock to run at an

incorrect rate. In our measurements, the clock is slow by approximately 410 ms after

merely 120 s. The delay measurements we need to make are on the millisecond level,

and having this large of a discrepancy is unacceptable. Typically, the fix is to set up

a network time protocol (NTP) server and have all nodes set their clocks with a NTP

daemon. This method works for clocks that are slightly off, but our clock skew is too

severe. To fix this problem, the clocks are synchronized five times a second.

25

4.3 Results

4.3.1 One-hop results

We simulated a one-hop unidirectional VoIP flow and display the results in Table 4.1

and Figure 4.1(a). (All figures in Chapter 4 appear in Section 4.7.) On average,

the delay experienced by a packet is 2.2 ms. The cumulative distribution function

shows that the vast majority of the packets experience a delay of less than 10 ms.

A couple packets are delayed by approximately 60 ms every 5 s. This periodic delay

is due to packets from the Hello Message subsystem which are generated every 5 s.

The switchable interface is used to send “hello” packets on four channels (the “hello”

packet for the fifth channel is sent using the fixed interface). Of the four channels,

one channel will be the channel on which our VoIP packets are currently being trans-

mitted, leaving three extra channels to service. Due to the design of spending at least

20 ms on each channel to average out the cost of switching, we will see a 60 ms delay

every 5 s.

A test of five simultaneous unidirectional flows was carried out to test the capabil-

ity of the system in supporting multiple flows of small packets. As shown in Table 4.1,

there is a slight increase in average delay to 3.8 ms. This increase in delay may be

due to queuing delay, since the application creates multiple packets at or near the

same time but must transmit them one by one. The characteristics of the delay in

Figure 4.2(a) are similar to that in the one flow case.

A VoIP call, similar to a telephone call, consists of two parties communicating

over a channel and thus requires flows in both directions. With a single flow in

both directions, the average delay increases to 2.7 ms as shown in Table 4.1. In

the usual single-channel ad-hoc network, it makes sense for one-hop bidirectional

traffic to experience higher delay than one-hop one-way traffic. Since both nodes are

transmitting, they must take turns and share the channel. In our multichannel case,

26

the two nodes transmit on orthogonal channels that do not interfere with each other.

The increase in time could be due to CPU processing. Each node must transmit

and receive 100 packets/s. Instead of dedicating all resources to transmission, time

must be taken to process reception as well. Running five flows in each direction also

increases the delay to 5.7 ms. The delay characteristics can be seen in Figures 4.3(a)

and 4.4(a).

From these results, we see that the multichannel multi-interface protocol is capable

of supporting one-hop VoIP traffic.

Table 4.1 Average delay for one-hop VoIP traffic

Number of Flows Average Delay (ms)
1 - one way 2.24
1 - two way 2.71
5 - one way 3.86
5 - two way 5.76

4.3.2 Two-hop results

We then expanded to a two-hop route using three nodes and simulated VoIP traffic

between the end-nodes. The results for unidirectional traffic can be found in Table 4.2,

Figure 4.5(a), and Figure 4.6(a). The average delays are still fairly small being just

4.3 ms and 5.2 ms for one and five flows respectively. There is some packet loss when

we have five flows along this two-hop path, but still within the tolerance of VoIP.

Due to the addition of another node along the path, we see two spikes in delay every

5 s: one due to the channel switching mechanism of the source node and another due

to the intermediate node. Synchronization of the channel switching would cause the

delay to add up to over 100 ms. Although still currently well within the 400 ms of

acceptable VoIP traffic, this can become problematic with more channels.

27

For two-way traffic, we again see the two spikes of delay in Figure 4.7(a). The

average delay is greater as there are more packets to transmit and also because the

intermediate node now has to switch between two channels in order to service both

flows. Assuming a uniform distribution of packets in time (one packet per ten ms,

each for two flows), there will be a 7.5 ms delay due to having to switch between

two channels at the intermediate node. (This also assumes waiting at least 20 ms on

each channel.) Add to this the additional delay due to backoff and the average delay

12.9 ms is reasonable.

Table 4.2 Average delay for two-hop VoIP traffic

Number of Flows in each direction Average Delay (ms) Drop Rate
1 - one way 4.33 0
1 - two way 12.91 0
5 - one way 5.17 0
5 - two way 29.20 0.1433%

Finally, we extend the experiment to five flows in each direction, with the results

shown in Table 4.2 and Figure 4.8(a). The average delay is around 29.2 ms and the

drop rate is only 0.14%. This loss rate can be masked using some loss concealment

technology. Note that we are only transferring 350 kbps in each direction and 500

packets/s. 802.11a/b/g is inherently bad for small packets due to overhead, since

small packets are not buffered up and transmitted as a large packet. Instead, the

system must send a packet, wait for an ACK, and then send the next packet. The

achievable throughput of the system is then lower when we have small packets. If the

packet size were larger with the same throughput rate, the delay and loss character-

istics should be better.

These two-hop results show that the multichannel multi-interface protocol is ca-

pable of meeting the drop rate and delay requirements of VoIP in a two-hop setting.

Expanding beyond two hops will create multiple bottlenecks that will undoubtedly

28

increase the delay to more than the 30 ms recommendation. The addition of more

simultaneous flows will also impact the delay.

4.4 Reducing the Delay

Through these experiments, we have seen that the channel switching mechanism arti-

ficially introduces delay into the system. The majority of the delay we are witnessing

is due to the requirement of staying on a channel for at least 20 ms. Lowering the

requirement to 10 ms or completely getting rid of the requirement would improve the

delay time. The requirement was instituted because of the long channel switching

time of the wireless cards. Changing to wireless cards that have a shorter channel

switching time would reduce this need. Unfortunately, a quick channel switch is

usually not required in 802.11 networks because the majority of networks are single

channel. Manufacturers do not readily list the switching time in their specifications.

At this time, we have not found a suitable wireless card that can switch channels

quickly.

One obvious method of reducing the delay would be to reduce the minimum

amount of time to stay on the channel. Reducing the time from the current setting

of 20 ms to something lower would help. Varying the minimum time to spend on a

channel depending on the history of the average queue length might improve perfor-

mance. This would reduce the amount of idle time on a channel while still attempting

to amortize the channel switching cost. We were unable to reduce the minimum time

to 10 ms because the function responsible for transmission is not always called within

10 ms. Another problem is the 10 ms resolution of the Linux kernel timer, which

prevents the use of some intermediate length of time. Without modification to the

kernel, 20 ms is the least amount of time to stay on a channel.

29

Since we cannot reduce the delay associated with each channel switch, we will

instead try to reduce the occurrence of unnecessarily long delays. Long delays are

created due to the “hello” packets being transmitted consecutively on all the channels.

An interface that services four channels must switch to three other channels and

spend at least 20 ms on each channel before returning to the loaded channel, thus

causing a delay of 60 ms. Staggering the transmission of “hello” packets prevents

this phenomenon from occurring. Another method that achieves the same result is

to service the channels differently. Instead of servicing the channels in round-robin

fashion, we will service more often the channels that have a higher average queue

length. This is done in lieu of staggering the creation of the “hello” packets due to

the overall benefit of servicing queues that have a longer average length. Thus, this

strategy could work with all types of traffic and not be limited to reducing the delay

due to “hello” packets. This assumes that a channel with few packets queued will not

have delay sensitive packets.

4.5 Delay Reduction Scheme

The original algorithm used to find the next channel to switch to utilizes a round-robin

scheme, which is presented here in pseudocode:

1 start_at = 0

2 if (current_channel >= 0 && current_channel < num_channels)

3 start_at = (current_channel + 1)%num_channels;

4 for(i = start_at; i <num_channels; i++){

5 if (queue for channel i not empty)

6 return i;

7 }

8 for(i = 0; i < start_at; i++) {

9 if (queue for channel i not empty)

10 return i;

11 }

30

This is quick to compute, but may not be optimal for delay. No extra information

is used to make an intelligent decision on the next channel to service. One piece of

information that could be helpful is the average queue length of each channel which is

updated each time the channel is serviced, similar to a running average. The update

equation is:

avg queue length (packets) = 0.5 × avg queue length + 0.5 × queue length (4.1)

The new algorithm to find the next channel will categorize a channel as heavily or

lightly loaded by making use of the average queue length. Using this categorization,

one of the lightly loaded channels will be serviced after all of the heavily loaded

channels have been serviced. The algorithm is presented below in pseudocode:

1 for (each channel i){ // categorizes the channel as high load,

2 // low load, or no load

3 if (queue for channel i not empty) {

4 if (average_queue_length of channel i > 1)

5 set high load=TRUE and low load=FALSE for channel i

6 else

7 set high load=FALSE and low load=TRUE for channel i

8 }

9 else {

10 set high load=FALSE and low load=FALSE for channel i

11 }

12 }

13 if (current channel is high load) {

14 for (i = current_channel+1; i < num_channels; i++)

15 if(channel i high load == TRUE)

16 return i;

17 for (i = previous_low_channel+1; i < num_channels; i++)

18 if(channel i low load == TRUE)

19 return i;

20 for (i = 0; i < previous_low_channel+1; i++)

21 if(channel i low load == TRUE)

22 return i;

23 for (i = 0; i < current_channel; i++)

24 if(channel i high load == TRUE)

25 return i;

31

26 }

27 else { //current channel is low load

28 for (i = 0; i < num_channels; i++)

29 if(channel i high load == TRUE)

30 return i;

31 for (i = previous_low_channel+1; i < num_channels; i++)

32 if(channel i low load == TRUE)

33 return i;

34 for (i = 0; i < previous_low_channel+1; i++)

35 if(channel i low load == TRUE)

36 return i;

37 }

Lines 1-12 categorize the currently used channel as high, low, or no load. If the

load of the current channel is high, then the next channel is found through code in

lines 13-26. Using the index i, attempt to find the next greater index for a channel

that has high load. If none is found, all high load channels have been serviced and it

is time to find a low load channel (line 17). The previous low channel l
c

keeps track

of the previous low load channel serviced and we start searching at l
c
+ 1. Without

this variable, the low load channel with the smallest index will always be serviced

and channels with a high index will be starved. If there are still no results, then we

wrap around and search for a low load channel starting from the beginning (line 20).

Lastly, a lack of results means there are no low load channels, so another high load

channel should be serviced (line 23). The algorithm for the case when the current

channel is low load is similar.

We carried out the four different VoIP tests as before and display the results below

in Tables 4.3 and 4.4. The one-hop one-flow results are similar in both schemes,

probably due to low number of packets being transmitted. A low number of packets

to transmit translates to a low number of packets which can be affected by the new

channel switching scheme. Thus, the average delay is mostly unaffected. There is

actually a reason that packets would experience higher delay in the new scheme when

there is only one flow being transmitted from a node. The new scheme results in

32

more switches, which means less transmission time. However, the increase should

be minimal in this case and so the increase/decrease we witnessed is likely to be

circumstantial. A graph of the delay can be found in Figure 4.1(b) and 4.3(b).

Notice that the periodic 60 ms delay no longer exists, as we distributed the delay.

Instead, there are 20 ms and 40 ms spikes in delay, in addition to the occasional 60 ms

spike.

Table 4.3 Average delay for one-hop VoIP traffic for both schemes

Old Scheme New Scheme
Number of Flows Avg. Delay (ms) Drop Rate Avg. Delay (ms) Drop Rate

1 - one way 2.44 0 2.09 0
1 - two way 2.38 0 2.71 0

5 - one way 3.86 0 2.71 0
5 - two way 5.76 0 4.51 0

Table 4.4 Average delay for two-hop VoIP traffic for both schemes

Old Scheme New Scheme
Number of Flows Avg. Delay (ms) Drop Rate Avg. Delay (ms) Drop Rate

1 - one way 4.33 0 4.65 0
1 - two way 12.91 0 12.10 0

5 - one way 5.17 0 5.08 0
5 - two way 29.20 0.1433% 24.90 0.13%

The one-hop five-flow results are more interesting since we now have many packets

to transmit and we might actually see some improvement here. In both one-way and

two-way cases, the average delay is reduced by 29.6% and 21.7% respectively (Figures

4.2(b) and 4.4(b)). Moving on to two-hop traffic, we again see little change for a single

flow of traffic (Figures 4.5(b) and 4.7(b)). There is also little change (Figure 4.6(b))

for five-flow one-way traffic. There is a decrease of 14.7% in average delay for five-flow

two-way traffic (Figure 4.8(b)). The drop rate slightly decreased as well. From this

33

data, it seems the delay sensitive channel switching scheme works just as well, if not

better than the round-robin channel switching scheme.

4.6 Summary

We simulated VoIP traffic on the Net-X testbed and found the performance character-

istics to be satisfactory for one- and two-hop communication. However, the average

measured delay for two-hop communication is near the suggested limit, so we pro-

posed a delay reduction scheme that services certain channels more often. Channels

that have historically had more packets are given priority. This succeeded in reducing

the average measured delay from 29.20 ms to 24.90 ms. Communication across three

or more hops will result in poor performance.

34

4.7 Graphs of Delay Results

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

20

40

60

80

100

Packet

D
el

ay
 (

m
s)

Delay

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(a) Round Robin Channel Switching

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

20

40

60

80

100

Packet

D
el

ay
 (

m
s)

Delay

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(b) Delay Sensitive Channel Switching

Figure 4.1 Delay of 1 one-way one-hop flow

35

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

20

40

60

80

100

Packet

D
el

ay
 (

m
s)

Delay

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(a) Round Robin Channel Switching

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

20

40

60

80

100

Packet

D
el

ay
 (

m
s)

Delay

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(b) Delay Sensitive Channel Switching

Figure 4.2 Delay of five simultaneous one-way one-hop flows (1 flow shown)

36

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

200

Packet

D
el

ay
 (

m
s)

Delay

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(a) Round Robin Channel Switching

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

200

Packet

D
el

ay
 (

m
s)

Delay

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(b) Delay Sensitive Channel Switching

Figure 4.3 Delay of 1 two-way one-hop flow

37

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

200

Packet

D
el

ay
 (

m
s)

Delay

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(a) Round Robin Channel Switching

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

200

Packet

D
el

ay
 (

m
s)

Delay

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(b) Delay Sensitive Channel Switching

Figure 4.4 Delay of five simultaneous two-way one-hop flows (1 flow shown)

38

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

Packet

D
el

ay
 (

m
s)

Delay

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(a) Round Robin Channel Switching

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

Packet

D
el

ay
 (

m
s)

Delay

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(b) Delay Sensitive Channel Switching

Figure 4.5 Delay of 1 one-way two-hop flow

39

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

Packet

D
el

ay
 (

m
s)

Delay

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(a) Round Robin Channel Switching

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

Packet

D
el

ay
 (

m
s)

Delay

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(b) Delay Sensitive Channel Switching

Figure 4.6 Delay of five simultaneous one-way two-hop flows (1 flow shown)

40

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

200

250

Packet

D
el

ay
 (

m
s)

Delay

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(a) Round Robin Channel Switching

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

200

Packet

D
el

ay
 (

m
s)

Delay

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(b) Delay Sensitive Channel Switching

Figure 4.7 Delay of 1 two-way two-hop flow

41

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

200

250

300

Packet

D
el

ay
 (

m
s)

Delay

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(a) Round Robin Channel Switching

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

50

100

150

200

250

300

Packet

D
el

ay
 (

m
s)

Delay

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Delay (ms)

C
D

F

Cumulative Distribution Function

(b) Delay Sensitive Channel Switching

Figure 4.8 Delay of five simultaneous two-way two-hop flows (1 flow shown)

42

CHAPTER 5

SUPPORT FOR MULTIPLE INTERFACES

The purpose of using multiple interfaces in the Net-X testbed is to increase spatial

reuse of the channels. With the addition of a second interface, results have been

higher throughput compared to a single-interface, single-channel network. However,

as we will show later, one important case where the performance increase has been

small is in the area of TCP throughput. Many applications on the internet utilize

Transmission Control Protocol (TCP). The advantages of TCP include reliability and

automatic tuning of load in response to network conditions. TCP accomplishes this

by using feedback from the destination. The sender will tune the amount of data sent

in response to the receiver’s acknowledgments. The services provided by TCP are

vital to many applications, making it vital to assess and improve the performance of

TCP traffic in our testbed. We add a third interface at each node for this purpose.

Adding a third interface also has the potential of improving UDP performance.

5.1 Previous Work

Previous experiments by Bhardwaj have shown that single-hop TCP traffic performs

well in single-interface and multi-interface multichannel networks [15]. However, mov-

ing to multihop networks has shown in the general case that using two interfaces fails

to solve all the problems faced in single-channel networks. Bhardwaj suggested that

this was due to intermediate nodes having to alternate sending TCP DATA and TCP

ACK packets, resulting in less time on a channel to transmit TCP DATA packets.

43

He further found that TCP throughput is good in cases where the return route does

not share any intermediate nodes with the sending route. In this scenario, each of the

nodes only has to send packets to one other node, instead of having to switch back

and forth between two channels in order to send the TCP DATA and TCP ACK.

A routing protocol that attempts to set up forward and reverse routes that do not

share a common intermediate node will solve this problem, provided that there is no

other traffic using other channels but sharing the routes. Another suggestion made

by Bhardwaj was to utilize a third interface to avoid the cost of having to switch

an interface among two different channels. The addition of the third interface was

undertaken in hopes of solving this problem.

5.2 Implementation Issues

In the Net-X system, interfaces are defined as “fixed” or “switchable” [1]. A “fixed”

interface is primarily used for receiving since it cannot change to its neighbor’s chan-

nel. We decided to use the third interface as a “switchable” interface to solve the

problem mentioned above.

The designers of the Net-X framework saw the need for support of numerous

interfaces and most of the code was easily ported. No changes were necessary in the

kernel multichannel routing (KMCR) module. However, it was necessary to make

changes in the hybrid multichannel protocol to support the third interface. In the

current implementation, all of the channels are added as valid channels for each of

the interfaces. A problem arises when attempting to add a routing entry because the

algorithm will search for the first interface that supports the desired channel. This will

leave the third interface totally unused as the second switchable interface will always

return a positive result. There are two possible fixes for this: (1) assign a subset

of channels to each of the switchable interfaces or (2) load-balance the assignment

44

of routes to interfaces. In both schemes, all channels will be added to the fixed

interface as valid channels. All of the channels can then be assigned disjointly to

the remaining interfaces. For example, with three interfaces (one fixed f1 and two

switchable s1, s2) and five channels (c1, c2, c3, c4, c5), we can assign (c1, c3, c5) to s1

while assigning (c2, c4) to s2. Underutilization becomes a problem if transmissions

are only happening on channels c1 and c3. It might be possible to design the hybrid

protocol so that the fixed channel of adjacent nodes will not result in this formation,

but that complicates the protocol and unnecessarily constrains the possible channels

to use.

A better scheme is to load-balance the assignment of channels to interfaces. All

channels are valid channels for each of the interfaces. The first routing entry is

assigned to interface s1. If another routing entry is added with the same channel as

before, then it will also be assigned to interface s1 as well. Otherwise, the second

entry is assigned to interface s2. The basic algorithm is to assign the channels equally

to the available switchable interfaces. There will be underutilization if all of a node’s

routes have to go through the same neighbor, but the scheme does no worse than a

two-interface protocol.

Another issue to think about is the interface to use when sending broadcast pack-

ets. In the two-interface case, all channels except the fixed channel are assigned to the

switchable interface. With three interfaces, there are two distinct possibilities: fixed

and adaptive. In the fixed scheme, we can either fix all of the remaining channels on

one of the switchable interfaces, or a subset on interface s1 and the rest on interface

s2. The latter scheme will equally distribute the delay associated with the broad-

cast packets on all the interfaces, cutting down on the maximum delay. However,

for a highly time-sensitive application, it could be advantageous to assign all of the

non-delay-sensitive broadcast packets to be sent on one interface, and then using the

second interface for the time sensitive application. In the adaptive case, it is possible

45

to assign broadcast packets for channel c1 to the same interface that unicast packets

will use. In the event of no unicast packets on the corresponding channel, the most

recently used interface for that channel can be used for sending out broadcast packets.

The final implementation uses the load balancing method along with the adaptive

broadcast interface scheme. A quick summary of how to assign routes is as follows:

• Initialization: Broadcast channels assigned as equally as possible among switch-

able interfaces.

• Unicast channels assigned as equally as possible among switchable interfaces

if no route to channel exists. Each time a unicast channel c is assigned to an

interface i, assign broadcast channel c to interface i as well. If a route to a

channel already exists, then use the same route. Routes are lost after 10 s of

non-use. Each channel is assigned to at most one switchable interface.

5.3 Setup

We set up routes of various lengths in order to test the usefulness of the third interface.

As mentioned before, the third interface only becomes useful in a multihop network,

or if there are transmissions for two different channels from the same node. Wireless

connections are highly dependent on the environment, so a single-hop route may

become a two-hop route and vice versa. We utilized a software firewall (iptables) to

drop packets from nodes that are not supposed to be adjacent for our tests. This fixes

the problem of varying wireless conditions and also helps establish multihop routes.

The neighbor tables of the hybrid multichannel protocol are allowed to populate and

then frozen after 3 min. At this time, the firewall is turned off. In this manner, we

can ensure that a two-hop route will stay at two hops, even if channel conditions

temporarily improve so that there is a direct one-hop link between two nodes. A

46

total of five nodes are used, with node connectivity as shown in the link graph in

Figure 5.1.

When testing with a single interface, all nodes use the same channel. Static routes

are set up to allow multihop communication. The dual and triple interface tests run

the HMCP [1] on top of the Net-X framework. The fixed interface of each node is set

to a different channel from the set {36, 48, 64, 149, 161}. In addition, a traceroute

is performed immediately prior to each trial so that route discovery delay is avoided.

Each of the cases was run for five trials of 60 s each. As before, iperf is used to

generate traffic. To provide a basis for comparison, the same tests are run with a

single-channel network and the two interface hybrid multichannel protocol, as well as

the new three-interface implementation.

A B C D E

Figure 5.1 Node connectivity

5.4 TCP Results

The results in Figure 5.2 show the poor throughput achieved when using a single

interface. Since all the nodes must share the same channel, multihop transfers will

have throughput upper-bounded by the single-hop throughput divided by the number

of hops. Using the two interface HMCP results in higher throughput, but the dropoff

is rapid as we increase the number of hops. The throughput is consistently higher than

the single interface case by about 500 kbps. The triple interface implementation shows

greatly improved throughput over all multihop cases. The three interface throughput

is 1.56×, 2.30×, and 2.72× that of the two interface throughput for the two-, three-,

47

and four-hop flows respectively. This shows that the third interface makes a big

impact on TCP performance.

1 2 3 4
0

1

2

3

4

5

6

Hops on Route

T
hr

ou
gh

pu
t (

M
bp

s)

Throughput vs Hops on Route for TCP Flow

Single Interface
Dual Interface (Net−X)
Triple Interface (Net−X)

Type

Figure 5.2 TCP throughput results

5.5 UDP Results

As seen in Figure 5.3, there is already a huge performance gain in two interface

Net-X over a single interface network. Adding a third interface should not make

much of a difference since there is no need for bidirectional transmission in UDP. Our

results show a slight improvement in throughput when using a third interface. This

improvement is likely due to distributing the transmission of “hello” packets over

two interfaces. Thus, the interface used to send data packets spends more time on

the channel sending data packets instead of switching and sending “hello” packets. If

there were UDP flows in both directions, the aggregate throughput of the flows would

48

still be bounded by the rate of one interface. Due to the single fixed interface being

used for receiving, it is currently impossible for aggregate throughput to be above

6 Mbps in a multihop chain topology.

1 2 3 4
0

1

2

3

4

5

6

Hops on Route

T
hr

ou
gh

pu
t (

M
bp

s)
Throughput vs Hops on Route for UDP Flow

Single Interface
Dual Interface (Net−X)
Triple Interface (Net−X)

Type

Figure 5.3 UDP results

5.6 Summary

The poor performance of TCP over multiple hops is addressed by adding a third

“switchable” interface. This enables the simultaneous sending of TCP DATA and

TCP ACK packets. Implementation issues for utilizing the third interface are dis-

cussed and one method is implemented. This results in TCP performance are 1.56×,

2.30×, and 2.72× that of the two interface Net-X system. UDP throughput is slightly

increased.

49

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We conducted a variety of tests on our testbed. Beginning with a single interface,

we found that different wireless interfaces have varying throughput results in the

face of adjacent channel interference. Using multicast packets, we determined that

adjacent channel interference can be worse than same-channel interference due to

lack of deferrals. The experiments performed in the Illinois Wireless Wind Tunnel

show that experiments sensitive to SINR will yield different results in two different

locations. When utilizing two or three interfaces in the same node, we witnessed

interference between channels {36, 49} and {149, 161}. This information needs to be

taken into account if the network is to be fully loaded. There are only three channels

({36, 64, 149} or {36, 64, 161}) that are close to interference-free when utilizing three

interfaces. Since interference seems to be affected by interface hardware used and

environment, it is better to use protocols that can dynamically estimate this.

Our experiments of VoIP on the Net-X testbed show that two-hop VoIP can

perform well. Drop rates of 0.14% and average measured delay of 29.2 ms for two-

hop traffic is acceptable for VoIP. To improve performance of VoIP, a delay reduction

scheme was implemented and shown to be beneficial. However, three-hop and greater

VoIP traffic will likely be poor in performance.

We witnessed the poor performance of multihop TCP in single-channel ad-hoc

and two-interface Net-X networks. The performance of multihop TCP was improved

with the addition of a third “switchable” interface. The throughput using a third

interface was 1.56×, 2.30×, and 2.72× that of two interface TCP throughput for

50

two-, three-, and four-hop communication. UDP performance was largely unchanged

since multihop UDP on Net-X already performs well.

6.1 Future Work

6.1.1 Cross channel interference

The cross channel interference varies depending on wireless interface and antenna.

Finding a wireless interface with a better design would result in less cross channel

interference, possibly allowing the use of more channels.

6.1.2 Switching delay

The results from VoIP tests show that the large switching delay greatly affects the

performance of VoIP, and also takes away from the transmission time. Finding a

wireless interface with a smaller switching delay or modifying the driver to reduce

this switching time would help.

6.1.3 Minimum channel time

The minimum channel dwelling time of 20 ms hurts the performance of VoIP traffic.

To reduce this idle time, a timer with higher resolution must be used. Porting the

Net-X system to a more recent version of Linux might make this possible.

6.1.4 Routing

During our experiments, we noticed that routes would sometimes be lost when under

heavy traffic. The “hello” packets do not make it to the destination, even though

data packets are still getting through. Sending multiple “hello” packets to improve

51

the probability of reception can help. Another problem is the reactive nature of the

WCETT routing protocol. Multihop routes take a long time to set up and sometimes

time out. A proactive routing protocol might solve this problem.

6.1.5 Multiple interfaces

The third interface can be used as a “fixed” interface, or even a variable interface that

can be “fixed” for periods of high receiving and “switchable” for high transmissions.

This would require further changes in the hybrid multichannel routing protocol, but

could result in better performance.

52

REFERENCES

[1] C. Chereddi, “System architecture for multichannel multi-interface wireless net-
works,” M.S. thesis, University of Illinois at Urbana-Champaign, April 2006.

[2] P. Kyasanur, “Multichannel wireless networks: Capacity and protocols,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, 2006.

[3] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A multi-radio unifi-
cation protocol for IEEE 802.11 wireless networks,” Broadband Networks, 2004.
BroadNets 2004. Proceedings. First International Conference on, pp. 344–354,
25-29 Oct. 2004.

[4] P. Kyasanur and N. Vaidya, “Routing and interface assignment in multi-channel
multi-interface wireless networks,” Wireless Communications and Networking
Conference, 2005 IEEE, vol. 4, pp. 2051–2056 Vol. 4, 13-17 March 2005.

[5] P. Kyasanur and N. H. Vaidya, “Routing and link-layer protocols for multi-
channel multi-interface ad hoc wireless networks,” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 10, no. 1, pp. 31–43, 2006.

[6] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless
mesh networks,” in MobiCom ’04: Proceedings of the 10th Annual International
Conference on Mobile Computing and Networking. New York, NY, USA: ACM,
2004.

[7] C. Cheng, P. Hsiao, H. Kung, and D. Vlah, “Adjacent channel interference in
dual-radio 802.11 nodes and its impact on multi-hop networking,” in IEEE Global
Telecommunications Conference (GLOBECOM 2006), November 2006.

[8] “Supplement to ieee standard for information technology telecommunications
and information exchange between systems - local and metropolitan area net-
works - specific requirements. part 11: wireless lan medium access control (mac)
and physical layer (phy) specifications: high-speed physical layer in the 5 ghz
band,” IEEE Std 802.11a-1999, 1999.

53

[9] N. H. Vaidya, J. Bernhard, V. V. Veeravalli, P. R. Kumar, and R. K. Iyer,
“Illinois wireless wind tunnel: A testbed for experimental evaluation of wireless
networks,” in E-WIND ’05: Proceedings of the 2005 ACM SIGCOMM Workshop
on Experimental Approaches to Wireless Network Design and Analysis. New
York, NY, USA: ACM, 2005, pp. 64–69.

[10] “ITU-T recommendation G.114,” International Telecommunication Union, Tech.
Rep., 1993.

[11] B. Goode, “Voice over internet protocol (voip),” Proceedings of the IEEE, vol. 90,
no. 9, pp. 1495–1517, Sep 2002.

[12] A. Markopoulou, F. Tobagi, and M. Karam, “Assessment of voip quality over
internet backbones,” INFOCOM 2002. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 1,
pp. 150–159 vol.1, 2002.

[13] “Pulse code modulation (pcm) of voice frequencies, ITU-T recommendation
G.711,” International Telecommunication Union, Tech. Rep., 1993.

[14] “D-itg, distributed internet traffic generator,” 2008. [Online]. Available:
http://www.grid.unina.it/software/ITG/

[15] R. Bhardwaj, “Lessons from a multichannel wireless mesh network,” M.S. thesis,
University of Illinois at Urbana-Champaign, 2007.

54

