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Abstract—A joint congestion control, channel allocation and
scheduling algorithm for multi-channel multi-interface multi-
hop wireless networks is discussed. The goal of maximizing a
utility function of the injected traffic, while guaranteeing queues
stability, is defined as an optimization problem where the input
traffic intensity, channel loads, interface to channel binding
and transmission schedules are jointly optimized by a dynamic
algorithm. Due to the inherent NP-Hardness of the scheduling
problem, a simple centralized heuristic is used to define a lower
bound for the performance of the whole optimization algorithm.
The behavior of the algorithm for different numbers of channels,
interfaces and traffic flows is shown through simulations.

I. I NTRODUCTION

New challenges in wireless network design refer to a more
efficient bandwidth utilization and the use of new networking
paradigms. The former goal is related to the growing bandwidth
demand and the scarcity of available spectrum. The latter refers
to the need for flexible and easy deployment, self configuration
and adaptation to the working condition. Multi-hop wire-
less networks have been identified as a valuable networking
paradigm able to fulfil the previous requirements. Examplesof
multi-hop wireless networks include ad hoc networks and mesh
networks. Practical interest in multi-hop wireless networks
is confirmed by the recent development of standards which
explicitly encompass the mesh paradigm, where the backhaul
network is organized in an ad hoc topology. The IEEE 802.16
standard [3] is one example. In the context of 802.11 networks
a special working group is dedicated to the mesh extension,
which is referred to as 802.11s [4]. Other standardization
efforts are focusing on the introduction of mesh-like support
in their network architecture, such as 802.15.3/4, where the
network architecture implicitly supports a mesh-like structure,
and 802.15.5, which is working to define a mesh structure for
personal area networks. It is clear that a deep understanding
and the ability to optimize the performance of multi-hop
wireless networks will benefit significantly in these contexts.

With the motivation of improving performance of multi-hop
wireless networks, in the last few years great attention hasbeen
devoted to networks where each node is provided with multiple
radio interfaces and can operate on multiple channels [1]. This
new degree of freedom has been proved to potentially allow
for increased capacity with respect to single-channel single-
interface networks [2]. This approach is particularly interesting

Research reported here is supported in part by U.S. NationalScience
Foundation award CNS 06-27074, U.S. Army Research Office grant W911NF-
05-1-0246 and “Ing. Aldo Gini” Foundation, Padova, Italy. Any opinions,
findings, and conclusions or recommendations expressed here are those of
the authors and do not necessarily reflect the views of the funding agencies.

if applied to 802.11 networks, since multiple channels are
already available and devices provided with multiple wireless
networking cards are being designed and already exist in some
testbeds.

A lot of effort has also been spent in the last few years to
understand the challenges related to resource allocation in such
networks, where the increased number of variables to be jointly
optimized has represented a big issue. The problem has been
approached from different perspectives, ranging from heuristic
and protocol oriented solutions [3], [4], [5], [6], whose perfor-
mance is far from being exactly defined, to the determinationof
theoretical bounds [7], [8], [9], whose practical implementation
is not straightforward. It is thus worth investigating an approach
aiming at the design of practical algorithms based on a solid
theoretical background, which can be analytically proved to
guarantee some performance bounds [9].

In this paper, we consider the problem of joint congestion
control, channel allocation and scheduling for multi-hop wire-
less networks in a general communication and interference
scenario. The problem is formulated as a joint optimization,
which is then solved by a dynamic algorithm and is potentially
able to achieve the optimum solution under certain assump-
tions. A specific simplified scenario is also evaluated, where the
scheduling is actually an inherently NP-Hard problem, and thus
a heuristic is proposed. The channel loading and scheduling
approach is somewhat similar to the one proposed in [9] but
this paper focuses on a throughput optimal approach [10], is
inherently multi-hop, and congestion control is also integrated
in the framework. We build on the past work on network utility
optimization (discussed in Section III), by using the notion of
virtual links to facilitate analysis of multi-channel networks.

The paper is organized as follows. The complete system
model and the goal of the proposed analysis are presented
in Section II. Related work is reviewed in Section III. The
optimization problem is formulated in Section IV and the
proposed solution is presented in Section V together with
stability issues, addressed in Section VI. The scheduler is
defined in Section VII and simulation results for the whole
algorithm are in Section VIII. Conclusions end the paper.

II. SYSTEM MODEL

Our system model is derived from similar models used in
past work [10], [9], with suitable modifications to capture the
availability of multiple channels, as described below.

Consider a multi-hop wireless network. Each node in{n :
n = 1, . . . , N} is provided with In half duplex wireless
interfaces. At any given time, each interface can tune to any
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Fig. 1. Node model

one ofC channels{c : c = 1, . . . , C}. The channel used by an
interface may change over time. For the algorithm definition,
a general interference model is initially assumed (which can
also encompass non-orthogonal channels). In Section VII, a
simplified interference model based on orthogonal channels,
and communication and interference graphs, is used in order
to define a greedy heuristic.

Traffic flows are, in general, carried over multi-hop routes.
Each end-to-end unicast connection will be referred to as a
commodity in the following. Let {s : s = 1, . . . , S} be the
commodities set. The input rate for commoditys at noden is
λs

n. Let λ be the vector of all input rates. Each input rate can
assume valuesλs

n ∈ Λs
n.

As a result of the proposed algorithm, each noden will
be provided with an input queueUs

n,in for each commodity
s, and C × S output queues,Us

n,c,out one for each channel-
commodity pair. All the incoming traffic for commoditys is
loaded on queueUs

n,in. Output queues for commoditys are
loaded using packets stored in queueUs

n,in, according to the
policy described in the next sections. Inside each node, and
for each commodity, a connection is defined between the input
queueUs

n,in and each of the output queuesUs
n,c,out on different

channels, for the same commodity. Such connections will be
referred to asvirtual links in the following. Let γs

n,c be the
rate at which data is transferred from the input queueUs

n,in to
the output queueUs

n,c,out, i.e. the rate of the associated virtual
link. Let γ denote the vector for allγs

n,c andΨ its feasible set,
which represents the rate region for the virtual links. The set
Ψ will be defined in Section VI, based on a stability argument
and in order not to modify the capacity region of the actual
network.

Let rs
a,b,c be the transmission rate associated with the flow

between nodesa and b on channelc, carrying traffic for the
commoditys andr be the corresponding vector for alla,b and
c.

The physical layer capacity for the link between nodesa
and b on channelc is denoted aswa,b,c. Let us denote byw
the vector consisting ofwa,b,c for all nodesa, b and channelc.
The feasible rate region, i.e. the set of all feasiblew vectors,
is denoted asW, which depends on the interference model,

and, in general, is also constrained by the limited number of
wireless interfaces at each node.

The utility function for commoditys associated with each
source noden is denotedGs

n(λs
n). To allow the use of convex

optimization techniques, all the utility functions are assumed
to be strictly concave, and the rate vectorsw will actually be
considered as belonging to the convex hull of the setW, w ∈
Co(W). Similar assumptions have been made in past work as
well [10], [11].

The goal of the proposed algorithm is to jointly define

• congestion control
• routing
• channel loading
• interface binding and scheduling

with provable properties in terms of stability
(achieved when the following property is satisfied:
limt→∞ E[

∑

n,c,s(U
s
n,c,out + Us

n,in)] < +∞) and network
utility maximization.

In the following, a general formulation is presented in terms
of an optimization problem on a network flow. A Lagrangian
relaxation allows to define a distributed utility maximization,
channel loading and scheduling which turns out to be based on
the concept of “back pressure” scheduling [10]. Our approach
makes use of “virtual links” for loading the queues on each
channel. A stability issue in the definition of virtual link
rates is discussed below, and a Lyapunov argument is used to
justify the solution. A heuristic way to solve the scheduling
optimization is also discussed for the case of a simplified
transmission and interference model. A lower bound for the
performance of the joint algorithm is also identified later in
the paper.

III. R ELATED WORK

The concept of “layering as optimization decomposition”
has been investigated in the last few years as a powerful way
to analytically define cross layer optimization problems and
at the same time design feasible algorithms for their solution
[11]. In particular, joint algorithms for congestion control and
transmission scheduling have been proposed [12] which are
able to jointly optimize source rate and link scheduling [13],
[10], [14] including also the power control operation [15],[16].
The mathematical tools widely used in this new approach are
essentially optimization problem decomposition by Lagrange
relaxation, sub gradient algorithms and Lyapunov stability
[17], [18]. The work presented in this paper is based on the
decomposition of an optimization problem defined over the
multi-channel network model.

The solution is related to the general scheduling algorithm
presented in [10], [15]. In that theoretical formulation, the
stability of the system is defined as the property of having
bounded queue lengths, and the capacity region for the network
is defined as the set of input rates for which there exists an
algorithm which is able to keep the network stable. Given a
set of input rates which lies inside the capacity region of the
system, then the proposed algorithm is able to guarantee sta-
bility. The core of the scheduler is based on the maximization
of a metric which depends on the rate allocated to each link,
multiplied by the difference between the queue length at the
link receiver side minus the queue length at the transmitter
side (thus the name “back pressure”). In [10], a congestion
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controller is added on top of the scheduling algorithm which
is proved to converge to a solution close to the optimum.

The impact of an imperfect scheduler in the joint scheduling
and congestion control can in general lead to poor performance
[19]. In case an imperfect scheduler is used, the joint algorithm
presented in [10] is proved to be able to guarantee the stability
within a capacity region scaled by a factor which depends on
the imperfect scheduler. This opens the way to the implemen-
tation of reduced complexity schedulers.

The most challenging part of the previous approach refers
to the scheduling operation, which in general requires a cen-
tralized and potentially very complex maximization. To move
toward a practical solution, the following simplificationsin the
interference model are commonly considered: each linkl only
interferes with a setη(l) of neighboring links, and each link
has capacitycl when scheduled.

In this case the scheduling, for a single channel scenario,
becomes a weighted maximum independent set problem. The
problem is in general NP-hard [20]. Clearly, a greedy cen-
tralized algorithm which selects at each step the link with the
highest metric and discards all the interfering links can achieve
a capacity region reduced by a factor of1/K whereK is the
interference degree [19]. In [21], it is pointed out that such a
greedy approach is optimal in graphs with particular structure.
A novel approach for the same problem is also proposed in
[22], where a gossiping algorithm is used.

Algorithms based on a maximal independent set scheduler
(non weighted) are known for single hop networks and are
presented in [23], [24], but this approach can not be extended
to the multihop case. In this case a different scheduler has to
be used, which exploits additional information on the traffic
intensity or number of hops [25].

The closest work for multi-channel multi-radio wireless
networks is the one in [9]. The authors propose a channel
loading mechanism which, combined with a multi-channel
maximal scheduler, is able to keep the network stable inside
a subset of the capacity region. The network model is such
that each node is provided with an input queue for each
commodity and an output queue for each commodity-channel
pair. A known traffic rate is applied at each input queue for
each node and, based on a metric accounting for the queue
lengths of all interfering nodes, a channel loading policy is
defined. A multi-channel maximal scheduler is then applied
to schedule the backlogged links. This approach is extended
to the multihop case only for the case where information on
the source rate is available and a congestion control is not
considered.

An optimization approach is also used in [8], where an LP
network flow problem is defined to model routing and channel
loading. The solution is used to obtain an upper bound for
the performance. A greedy scheduler based on the outcome of
the previous LP solution is then applied for solving the actual
resource allocation. A similar analysis is also found in [7].

In this paper, a network structure similar to the one in [9]
is assumed, and the optimization approach is based on the
decomposition presented in [11] and the argumentation in [10].
We propose an algorithm that works in a multihop scenario,
and whose simple channel loading mechanism is based only on
local information. The complexity is moved to the scheduling
operation, which in general can be very complex. The proposed
algorithm makes use of one input queue at each node for each

commodity and one output queue for each channel-commodity
pair at each node. The queue lengths are used, at each time
step, to make dynamic decisions about congestion control,
channel loading and transmission scheduling. In particular,
“virtual links” are introduced in order to model the channel
loading operation. The algorithm is analytically formulated
and then tested by simulations in a simplified communication
and interference scenario. The impact of numbers of channels,
interfaces and commodities in the network performance is
investigated.

IV. FORMULATION AS AN OPTIMIZATION PROBLEM

The goal of the proposed algorithm is to solve the following
optimization problem (see Table I for a summary of the symbol
definitions):

max
λ,r,w,γ

∑

n,s

Gs
n(λs

n) (1)

s.t.:
∑

i,c

rs
i,n,c + λs

n ≤
∑

c

γs
n,c ∀n, s (2)

γs
n,c ≤

∑

j

rs
n,j,c ∀n, c, s (3)

∑

s

rs
i,n,c ≤ wi,n,c ∀i, n, c (4)

γ ∈ Co(Ψ) (5)

w ∈ Co(W) (6)

λs
n ∈ Λs

n ∀n, s (7)

In the previous model:

• (1) is the objective function
• (2) is the flow conservation constraint at the input of each

node
• (3) is the flow conservation constraint at the output of

each node
• (4) is the constraint that the aggregate flow on a link must

be less than the physical rate
• (5) is the constraint on the flow in the virtual links for the

channel loading: this will be specified to model different
requirements. Note the convex hull operator.

• (6) is the feasible rate regions for the actual links.
• (7) is the feasible set for the input rates.

Symbols:
Gs

n(λs
n) Utility function

λ = [λs
n] Injected input rate

r = [rs
a,b,c

] Flows associated to channel-link-commodity connections
γ = [γs

n,c] Flows that load output channel-commodity queues
w = [wa,b,c] Physical rates associated to physical channel-link
Ψ Feasible “virtual rate region” for channel loading
W Feasible rate region for actual physical links
Λs

n Feasible input rates

TABLE I
SYMBOLS

Based on the assumption on the utility functions and on
the convexity of the domain, (1)-(7) is a convex optimization
problem.
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V. NETWORK FLOW OPTIMIZATION

The solution to the optimization problem is obtained via its
dual problem, relaxing all the constraints (2) and (3).

Let Uin = [Us
n,in] andUout = [Us

n,c,out] be the vectors for
all the Lagrange multipliers associated to constraints (2)and
(3) respectively. LetU = [Uin,Uout] be the vector for all the
Lagrange multipliers.

Relaxing the constraints (2) and (3), the Lagrange dual
function for the problem is:

L(U) = max
λ,r,w,γ

{

∑

n,s

Gs
n(λs

n)+

+
∑

n,s

Us
n,in



−
∑

j,c

rs
j,n,c − λs

n +
∑

c

γs
n,c



+

+
∑

s,c,n

Us
n,c,out



−γs
n,c +

∑

j

rs
n,j,c











,

where the optimization variablesλ, r, w, γ are still subject to
constraints (4)-(7) (here, and in the following, constraints are
omitted to simplify notation).

The previous expression can be rewritten as:

L(U) = max
λ

{

∑

n,s

Gs
n(λs

n) − λs
nUs

n,in

}

+ (8)

+max
r,w







∑

i,j,s,c

(

Us
i,c,out − Us

j,in

)

rs
i,j,c







+ (9)

+max
γ

{

∑

s,n,c

(

Us
n,in − Us

n,c,out

)

γs
n,c

}

. (10)

Note how each maximization represents a different “layer”
in the optimization task:

• (8) congestion control;
• (9) flow allocation, routing and physical rate allocation;
• (10) channel management (stability, channel loading, ... )
Let λ̃(U), r̃(U), w̃(U), γ̃(U) be the vectors of optimum

values for a given set of Lagrange multipliers, that clearlyde-
pend onU. Each of them can be computed locally, based only
on local information, except for̃r and w̃ in (9) which require
the knowledge of the feasible rate regionW. In particular, in
order to optimize (9), for each link between nodesi and j
on channelc defines∗ = arg maxs

{(

Us
j,c,out − Us

i,in

)}

. The
flow allocation is given by settingrs∗

i,j,c = wi,j,c andrs
i,j,c = 0

for s 6= s∗. Once chosen the flow to be potentially loaded on a
physical link, the following maximization has to be performed:
w̃ = arg maxw

{

∑

i,j,c

[

Us∗

i,c,out − Us∗

j,in

]+
wi,j,c

}

. This is the
back pressure algorithm [10].

In Section VII, an assumption about a specific feasible rate
region will be discussed, and the design of a greedy algorithm
to computew̃ will be presented, together with a lower bound
performance index.

Suppose for the moment that the only constraint imposed to
the virtual link rates is:

∑

c,s

γs
nc < Γn

were eachΓn is a constant, which is set according the stability
and capacity preservation discussed in Section VI.

Under this assumption, the maximization in (10)
requires that for each noden and commodity s,
c∗ = arg maxc

{(

Us
n,in − Us

n,c,out

)}

is chosen. If
(

Us
n,in − Us

n,c∗,out

)

> 0 then set γs
n,c∗ = Γn and all

γs
n,c = 0 for c 6= c∗, else set allγs

n,c = 0 ∀c (so that the
summation is 0; otherwise the summation would be negative).
This is essentially the back pressure based algorithm for the
virtual links γ.

The Lagrange function is convex thus the multipliers can be
computed using a sub gradient algorithm. It is known that a
sub gradient for a given vector of Lagrange multipliers is the
vector consisting of all multiplicative terms in the Lagrange
function. Note that such multiplicative terms are the results
of maximizations (8)–(10). With this choice, the Lagrange
multipliers are computed using a sequential algorithm which,
at each step, updates them based on the value of the local sub
gradient. Lett be the iteration index, which can be associated
with a time-slot in the system evolution. Thus the updating
rules for each multiplier at timet + 1 are:

Us
n,in(t + 1) =

[

Us
n,in(t) + α1(λ̃

s
n(U(t))+

+
∑

j,c

r̃s
j,n,c(U(t)) −

∑

c

γ̃s
n,c(U(t)))





+

(11)

Us
n,c,out(t + 1) =

[

Us
n,c,out(t) + α2(γ̃

s
n,c(U(t))+

−
∑

j

r̃s
n,j,c(U(t)))





+

. (12)

Note that the Lagrange multipliers actually behave like
queues in the caseα1 = α2 = 1.

In order to get a solution which converges to a point close to
the optimum,α1 andα2 should be set to be small constants. In
the caseα1 = α2 = 1 the solution will be oscillating around
the optimum point.

Note that at each timet a new sub gradient has to be
computed, thus the optimizations (8)–(10) has to be repeated
at each time slot. Let̃λ(t), r̃(t), w̃(t), γ̃(t) denote the vectors
solutions of the optimization optimization variables where the
time index has been explicitly shown, neglecting theU to
simplify notation.

Based on the previous argumentation, the proposed algo-
rithm for joint congestion control, channel allocation and
scheduling is presented in Algorithm 1.

VI. CHANNEL LOADING: STABILITY BY LYAPUNOV DRIFT

In the previous section the feasible rate set for the virtual
links used for the channel loading has not been specified. Here
it is proved that a sufficient condition for stability requires
the aggregated rate of the virtual links, used for the channel
loading, to be bounded.

The stability of the system is derived using a Lyapunov
argumentation. Consider the input rate for all commoditiesas
fixed (no congestion control) and assume it falls within the
capacity region of the network.
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Algorithm 1 Joint optimization
At each time stept, perform the following operations.

1) Congestion control. For each commoditys and noden:
λ̃s

n(t) = sup{λs

n
∈Λs

n
}

�
Gs

n(λs
n) − λs

nUs
n,in(t)

	
2) Channel allocation. For each commoditys and noden:

c∗ = arg maxc

��
Us

n,in(t) − Us
n,c,out(t)

�	
if
�
Us

n,in(t) − Us
n,c∗,out(t)

�
> 0 then

set γ̃s
n,c∗(t) = Γn and all γ̃s

n,c(t) = 0 for c 6= c∗

else
set all γ̃s

n,c(t) = 0 ∀c
end if

3) Scheduling and routing. For each link between nodesi and j
on channelc:

s∗ = arg maxs

��
Us

i,c,out(t) − Us
j,in(t)

�	
if
�
Us∗

i,c,out(t) − Us∗

j,in(t)
�

> 0 then

set r̃s∗

i,j,c(t) = wi,j,c(t) and all r̃s
i,j,c(t) = 0 for s 6= s∗

else
set all r̃s

i,j,c(t) = 0 ∀s
end if

w̃ = arg maxw

�P
i,j,c

h
Us∗

i,c,out − Us∗

j,in

i+
wi,j,c

�
4) Queues update:

the queues are automatically updated according to the rules
in (11) and (12) withα1 = α2 = 1.

The considered Lyapunov function isL =
∑

n,s(U
s
n,in)2 +

∑

n,s,c(U
s
n,c,out)

2 and the proof is derived from the one in
[10].

Consider the queue updating rules (11), (12) withα1 =
α2 = 1. The drift associated to the Lyapunov functionL
is denoted with∆(U(t)) = E [L(U(t + 1)) − L(U(t))|U(t)]
and it can be easily bounded as

∆(U(t)) ≤ B + 2
∑

ns

Us
n,in(t)E [λs

n(t)] + (13)

−2E





∑

i,j,c,s

rs
i,j,c[U

s
i,c,out(t) − Us

j,in(t)] | U(t)



+ (14)

−2E

[

∑

c,n,s

γs
n,c[U

s
n,in(t) − Us

n,c,out(t)] | U(t)

]

+ (15)

∑

n,s

(

∑

c

γs
n,c

)2

+
∑

n,c,s

(γs
n,c)

2 (16)

whereB is a constant term depending on ther terms.
According to Corollary 3.9 in [10], if the input rateλs

n

(which is loaded only on the input queue) is such that
λs

n + ǫ ∀n, s (for a small ǫ) lies inside the capacity region,
then there exists a randomized schedulingr̂, ŵ and γ̂, such
that

E





∑

c

γ̂s
n,c −

∑

i,c

r̂s
i,n,c



 = ǫ + λs
n ∀n, s, c

E





∑

j

r̂s
n,j,c − γ̂s

n,c



 = 0 ∀n, s

and thus choosing a scheduler̃, w̃, γ̃ according to the maxi-
mization in (9) and (10), then (14) and (15) can be bounded

leading to

∆(U(t)) ≤ B′ − 2ǫ
∑

n,s

Us
n,in +

+
∑

n,s

(

∑

c

γs
n,c

)2

+
∑

n,c,s

(γs
n,c)

2. (17)

Note that if
∑

n,s(
∑

c γs
n,c)

2+
∑

n,c,s(γ
s
n,c)

2 is bounded, the
drift becomes negative as the queue lengths increase above a
given threshold. Thus we define the feasible rate for the virtual
link as Ψ = {γs

n,c :
∑

c γs
n,c < Γn}, with Γn suitable positive

constants. The proposed network model artificially adds the
virtual links to the original network structure, thus we have
to make sure the resulting network is able to provide the
same capacity region as the original one. To guarantee such
a property, a value for eachΓn can be chosen as the smallest
value, greater than the maximum possible output rate for a
node (which is bounded).

VII. SCHEDULING

The scheduler defined in general terms in the previous
section requires a centralized optimization. Here a specific
communication and interference model is considered which
reduces the problem to a maximum weighted independent
set with some constraints imposed by the reduced number of
interfaces. Note that the maximum weighted independent set
problem (defined for the single channel case) is known to be
NP-Hard [20].

Assume a network withN nodes,C channels andI inter-
faces per node.

A secondary interference model is considered where each
radio link (i, j, c) interferes with a set of surrounding links in
the same channelη(i, j, c). Inside this set only one transmission
is possible at a given time. Each link has a known physical rate
ĉi,j,c when scheduled (without interference).

It is known [9], [19] that a greedy sequential and centralized
algorithm that at each step selects the link with the highest
metric and drops all the interfering links, can reach at least
a fraction β = 1/K of the maximum value in (9), where
K is the maximum number of links that cannot be scheduled
because of a given link has already been scheduled. Note that
the constraint on the number of interfaces can cause a link
activation to prevent the use of other links in different channels.
Thus K depends on the topology, number of channels and
interfaces.

Thus, this greedy scheduler allows for the solution of the
whole optimization problem to converge to the optimum re-
ferred to a capacity region scaled by a factorβ [10].

The previous lower bound is very conservative and the actual
performance of the greedy procedure is expected to be much
better than the stated bound. Some reasons are listed below:

i) the number of contending nodes is actually only the
number of backlogged nodes with positive back pressure, thus,
as long as the network is not heavily loaded, this number is
much smaller thanK;

ii) the loss in optimalityβ represents itself a lower bound.
The bound assumes that each time a link is scheduled, all the
dropped links have a weight which is close to the one of the
scheduled link.

iii) the maximal scheduling is close to the maximum
scheduling in most practical topologies [21].
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In the following, the proposed cross layer algorithm has been
tested using such a greedy centralized scheduler for a given
topology.

VIII. S IMULATION RESULTS

In this section the whole algorithm is tested using the greedy
centralized scheduler previously described. The presented re-
sults are referred to a simplified topology and interference
models and give some insight on the network performance as
a function of the number of channelsC, number of interfaces
per nodeI, and number of commoditiesS.

A. Grid topology

The algorithm has been simulated in a single network
snapshot composed byN = 16 nodes, placed in a regular
mesh with a distance of 0.2 units between adjacent nodes.

2

1

3 4

1

4

2

3

=sink=source

0.
2

Fig. 2. Topology and commodities. Each number represents a different
commodity.

Each node can potentially communicate with all neighbors
within a distance of 0.3 and, when transmitting, it causes
interference to neighbors within a distance of 0.3. All the com-
munication links have the same capacity, which has been set
equal to1/C, in order to allow for a comparison among results
with different number of channels. Commodities source and
destination have been associated with distinct nodes according
to the scheme shown in Figure 2. The utility function is the
same for all the nodes and is defined asGs

n(x) = log(x),
which implements a fairness based congestion control. The
system has been tested withC = {1, 2, 4, 8}, I = {1, ..., C},
S = {1, 2, 4}.

As can be seen from Figure 3, in all cases the aggregated
utility increases as the number of interfaces increases. Anyway,
the additional utility gained adding a new card decreases asthe
number of cards increases. For instance, in case ofC = 8, only
4 interfaces are enough for achieving the maximum utility. This
is in accordance with the asymptotic analysis presented in [2].
Please note that the utility is negative because a logarithmic
function is used and, in the simulated scenario, each flow turns
out to be smaller than one. Moreover the utility decreases as
the number of concurrent flows increases. This is due to the
specific scenario where the rate experienced by a single flow
decreases as the number of flows increases.

Even if the throughput maximization is not the main goal
of the simulated algorithm, in Figure 4 the aggregated trans-
mission rate of all commodities is shown. Similarly to the
utility behavior, the aggregated rate increases as the number of
interfaces increases and the maximum value is reached using
a number of interfaces smaller than the number of channels.
As the number of commodities increases the aggregated rate
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Fig. 3. Total utility for different numbers of channels, interfaces and
commodities.

increases, showing that the spatial reuse of the medium is
exploited.
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Fig. 4. Aggregated transmission rate for different numbers ofchannels,
interfaces and commodities.

In Figure 5 the average queue length in the stationary
regime is shown as a function of the number of interfaces and
channels. As the number of interfaces increases the average
length decreases. This has an impact on the end-to-end delay,
which results to be smaller if a higher number of interfaces is
used.

As the number of channels increases, the queue length
decreases as well. Note in particular that in all casesI = 4,
C = {4, 8} the maximum throughput is reached (see Figure 4).
On the other hand a higher number of channels allows for a
reduced queue length and thus a reduced delay.

The proposed algorithm has been proved to asymptotically
converge to the solution of the joint resource allocation prob-
lem, but the proposed analysis gives no insight on the time
required for the algorithm to converge. Figure 6 shows a typical
trend for the time evolution of aggregated queue lengths,
aggregated transmitted rate by the sources and aggregated
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Fig. 5. Average queue length for different numbers of channels and interfaces.
S = 4.

received rate at the sinks. As can be seen, the convergence
is reached after a relatively high number of iterations. A more
exhaustive investigation of the convergence time is presented in
Figure 7 where the time needed to reach a stationary condition
is plotted for different number of interfaces, channels, and
commodities. As can be seen, the convergence time decreases
as the number of interfaces increases, and increases as the
number of channel or commodities increases.

Our interpretation for this behavior is that, as the number of
queues in the system increases, more time is required for all
the queues to be served and thus reach a stable configuration.
This transient phase could be interpreted as a route discovery
mechanism. Increasing the number of interfaces leads to a
higher number of concurrent transmissions, which speeds up
the convergence process.

In some cases the time required for convergence is very
long. This can limit the practical implementation of such an
algorithm in an actual network. A reason for the slow con-
vergence is related to the routing mechanism, which imposes
no constraints on the feasible paths for the traffic. The traffic
thus can travel in all directions until a stable configuration is
reached.

It would be interesting to define a policy for setting a reduced
number of feasible paths for each commodity.

Convergence delay also depends on the particular congestion
controller. A detailed investigation is out of the scope of this
paper and represents an open research issue as pointed out in
[11].

B. Random topology

The algorithm has also been tested using random topologies
where nodes are uniformly placed in a unit square area.
Presented results are averaged over 10 random topologies. Only
connected topologies are considered. As in the previous case,
each node can potentially communicate with all neighbors
within a distance of 0.3 and, when transmitting, it causes
interference to neighbors within a distance of 0.3.

In Figure 8 and Figure 9 the utility and the rate for different
number of interfaces, channels and commodities are shown.
Results are similar to the ones in Figure 3 and Figure 4,
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Fig. 6. System time evolution. The curves shown are averaged over a moving
window of 100 samples.C = 8, S = 4, I = 4.
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Fig. 7. Number of slots required for convergence. It is measured as the
number of iterations needed to reach an aggregated queue length within 10%
of the stationary value. Dashed:S = 2; Dash-dotted:S = 4.

confirming that the marginal utility and rate gained adding an
interface is a decreasing function of the number of interfaces.

In Figure 10 (Figure 11) it is shown the ratio between the
experienced utility (rate) for a given set of parameters andthe
maximum utility (rate) achieved with the highest number of
interfaces. Results are averaged overS = {1, 2, 4} and 10
random topologies for each value ofS. Two different node
densities are considered, which are obtained setting the average
number of nodes within the communication and interference
range to 3 and 7.

The behavior is similar to the one already described for the
grid topology. It can be noted that a higher node density allows
for a reduced number of interfaces needed to reach the same
utility and rate values. Once again this is in accordance with
the analysis in [2].

In Figure 12 the rate scaling factor with respect to the single
channel case is plotted, as a function of the ratio between the
number of channels and the number of interfaces. The behavior
is similar to the one described in [2].
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Fig. 9. Aggregated utility for different numbers of channels, interfaces and
commodities. Results are averaged over random topologies with 7 nodes in
each communication range, on average.

C. Comparison with results in [8]

The scenario considered in [8] has been reproduced and
a comparison between the performance of our algorithm and
the one presented in [8] has been made. The algorithm in [8]
formulates the resource allocation as a network flow problem
and solves a linear program problem in order to define an upper
bound on the achievable performance. Then a greedy algorithm
is applied for the scheduling operations. All the sources have
the same traffic requirements (no congestion control) and the
objective is to find the maximum input rate scaling factor for
which a solution exists. Note that our algorithm aims at the
utility maximization rather than to the maximization of the
input rate scaling factor. Nonetheless, assuming a logarithmic
utility, fairness among different flows is enforced, thus pushing
our input rate scenario towards the one defined in [8].

Note that the optimization in [8] uses a centralized LP solu-
tion, while our algorithm can be run in a fully distributed way,
as long as a distributed scheduling mechanism is available.
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Fig. 10. Utility normalized with respect to the maximum utilityattained
with the maximum number of interfaces. The negative ratio is plotted in
order to provide an easier comparison with Figure 11. Resultsare averaged
over three different numbers of commoditiesS = {1, 2, 4} and 10 random
topologies. Node density: (D= nodes within communication range) dotted:
D = 7, dashed:D = 3.
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Fig. 11. Fraction of the maximum rate. Results are averaged over three
different number of commoditiesS = {1, 2, 4} and 10 random topologies.
Node density: (D= nodes within communication range) dotted:D = 7,
dashed:D = 3.

Thus our solution is closer to a practical implementation.
A grid 5× 6 topology is considered; each node has at most

4 neighbors. 4 sinks for the traffic are considered (S=4) and
results are averaged using{5, 10, 15, 20, 25} traffic sources.
Each sink is placed on a different quadrant. Sources are
connected to the closest sink. Results are shown in terms of the
aggregate rate scaling factor with respect to the single channel
case. In this formulation each channel has a fixed capacity,
so that the total bandwidth is increasing with the number of
channels.

As [8] does not provide all the details of the considered
scenario, in trying to reproduce it in our framework we had
to make some assumptions. Although this makes a detailed
quantitative comparison difficult, it still allows to verify that the
two approaches exhibit consistent behaviors. Figure 13 shows
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Fig. 12. Rate scaling factor with respect to the single channel case, as
a function of the ratio between the number of channels and the number
of interfaces. D is the average number of nodes in the communication and
interfering range. Results are referred toC = 6, I = {1, 2, 3, 4, 5, 6} and
averaged overS = {1, 2, 4} and 10 random topologies.

the rate gain in the two cases as a function of the number of
channels and interfaces. It is clear from these results thatthe
two approaches, though based on different techniques, have
a qualitatively similar behavior. On the other hand, while the
scheme in [8] is completely centralized and is more useful as
a benchmark than as a practical solution, the features of our
scheme make it easier to implement and therefore practically
relevant.
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Fig. 13. Rate gain factor with respect to the single channel case. Dotted: our
algorithm. Line: copied from Figures 7 and 8 in [8]

IX. CONCLUSIONS

A joint congestion control, channel allocation and scheduling
algorithm for multi-channel multi-interface multi-hop wireless
networks has been presented. The problem of maximizing a
utility function of the source rate has been defined as an
optimization problem and then solved by a dynamic algorithm.

The algorithm decomposes the whole optimization in differ-
ent functional sub-optimizations and uses the queues length as
a way to allow a joint solution of different optimization tasks.

A queue at the input of each node for each commodity and a
queue at the output of each node for each channel-commodity
pair have been used; a mechanism for loading the output
queues on different channels has been defined introducing the
notion of virtual links.

The algorithm has been presented for a general communi-
cation and interference scenario. In order to test the behavior
of the full algorithm, an instance of the problem, based on
a simplified communication and interference model, has been
simulated using a greedy centralized scheduler.

The network performance has been evaluated as a function
of the number of channels, interfaces and traffic flows. The
results are consistent with previous theoretical findings,and
confirm the goodness of the approach. On the other hand, the
specific features of our algorithm make it more suitable for
practical implementation in a distributed setting.
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