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Abstract—A joint congestion control, channel allocation and if applied to 802.11 networks, since multiple channels are
scheduling algorithm for multi-channel multi-interface multi- already available and devices provided with multiple veissl

hop wireless networks is discussed. The goal of maximizing a hetworking cards are being designed and already exist ire som
utility function of the injected traffic, while guaranteeing queues testbeds

stability, is defined as an optimization problem where the input .
traffic intensity, channel loads, interface to channel binding A lot of effort has also been spent in the last few years to

and transmission schedules are jointly optimized by a dynamic understand the challenges related to resource allocatisnch
algorithm. Due to the inherent NP-Hardness of the scheduling networks, where the increased number of variables to b#yoin
problem, a simple centralized heuristic is used to define a lower optimized has represented a big issue. The problem has been

bound for the performance of the whole optimization algorithm. hed f diff ¢ " ina f it
The behavior of the algorithm for different numbers of channels, @PProached irom difierent perspectives, ranging fromisear

interfaces and traffic flows is shown through simulations. and protocol oriented solutions [3], [4], [5], [6], whoserfuoe-
mance is far from being exactly defined, to the determinatfon
I. INTRODUCTION theoretical bounds [7], [8], [9], whose practical implertegion

New challenges in wireless network design refer to a moi@not straightforward. It is thus worth investigating apegach
efficient bandwidth utilization and the use of new netwogkin@iming at the design of practical algorithms based on a solid
paradigms. The former goal is related to the growing bantwictheoretical background, which can be analytically proved t
demand and the scarcity of available spectrum. The latterse guarantee some performance bounds [9]. _
to the need for flexible and easy deployment, self configumati N this paper, we consider the problem of joint congestion
and adaptation to the working condition. Multi-hop wirecontrol, channel allocation and scheduling for multi-hojpew
less networks have been identified as a valuable networki§§S networks in a general communication and interference
paradigm able to fulfil the previous requirements. Examples Scenario. The problem is formulated as a joint optimization
multi-hop wireless networks include ad hoc networks andrme¥hich is then solved by a dynamic algorithm and is potentiall
networks. Practical interest in multi-hop wireless netegor able to achieve the optimum solution under certain assump-
is confirmed by the recent development of standards whitRns. A specific simplified scenario is also evaluated, wslibe
explicitly encompass the mesh paradigm, where the backh&gheduling is actually an inherently NP-Hard problem, amwst
network is organized in an ad hoc topology. The IEEE 802.%86 heuristic is proposed. The channel loading and scheduling
standard [3] is one example. In the context of 802.11 netsorRPProach is somewhat similar to the one proposed in [9] but
a special working group is dedicated to the mesh extensidfis paper focuses on a throughput optimal approach [10], is
which is referred to as 802.11s [4]. Other standardizatidfherently multi-hop, and congestion control is also inaggd
efforts are focusing on the introduction of mesh-like suppaon the framework. We build on the past work on network utility
in their network architecture, such as 802.15.3/4, wheee tAPtimization (discussed in Section Ill), by using the notiof
network architecture implicitly supports a mesh-like stuwe, virtual links to _facilitate. analysis of multi-channel networks.
and 802.15.5, which is working to define a mesh structure for The paper is organized as follows. The complete system
personal area networks. It is clear that a deep undersgndifcdel and the goal of the proposed analysis are presented
and the ability to optimize the performance of multi-hof? Section Il. Related work is reviewed in Section Ill. The
wireless networks will benefit significantly in these comgex OPtimization problem is formulated in Section IV and the

With the motivation of improving performance of multi-hopProposed solution is presented in Section V together with
wireless networks, in the last few years great attentiorbeas Stability issues, addressed in Section VI. The scheduler is
devoted to networks where each node is provided with meltigiefined in Section VIl and simulation results for the whole
radio interfaces and can operate on multiple channels Hig T @lgorithm are in Section VIIl. Conclusions end the paper.
new degree of freedom has been proved to potentially allow
for increased capacity with respect to single-channellsing _ ] o )
interface networks [2]. This approach is particularly ieging ~ Our system model is derived from similar models used in

past work [10], [9], with suitable modifications to captuhet
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and, in general, is also constrained by the limited number of
wireless interfaces at each node.

The utility function for commoditys associated with each
source noder is denoted5? (A3). To allow the use of convex
optimization techniques, all the utility functions are @sed
to be strictly concave, and the rate vectarswill actually be
considered as belonging to the convex hull of the)dktw €
Co(W). Similar assumptions have been made in past work as
well [10], [11].

The goal of the proposed algorithm is to jointly define

congestion control

routing

channel loading

« interface binding and scheduling

with  provable properties in terms of stability
(achieved when the following property is satisfied:
limy—oo 032, o (U cout + Un i)l < +00) and network
Fig. 1. Node model utility maximization.
In the following, a general formulation is presented in term
of an optimization problem on a network flow. A Lagrangian
one ofC' channels{c: ¢c=1,...,C}. The channel used by anrelaxation allows to define a distributed utility maximizet,
interface may change over time. For the algorithm definjtioshannel loading and scheduling which turns out to be based on
a general interference model is initially assumed (which cahe concept of “back pressure” scheduling [10]. Our apgroac
also encompass non-orthogonal channels). In Section Vllrekes use of “virtual links” for loading the queues on each
simplified interference model based on orthogonal channethannel. A stability issue in the definition of virtual link
and communication and interference graphs, is used in ordates is discussed below, and a Lyapunov argument is used to
to define a greedy heuristic. justify the solution. A heuristic way to solve the schedglin
Traffic flows are, in general, carried over multi-hop routesptimization is also discussed for the case of a simplified
Each end-to-end unicast connection will be referred to astransmission and interference model. A lower bound for the
commodity in the following. Let{s : s = 1,...,S} be the performance of the joint algorithm is also identified latar i
commodities set. The input rate for commoditat noden is  the paper.
As. Let \ be the vector of all input rates. Each input rate can
assume valueas € AS. I1l. RELATED WORK

As a result of the proposed algorithm, each nodavill The concept of “layering as optimization decomposition”
be provided with an input queu€,, ;, for each commodity has been investigated in the last few years as a powerful way
s, andC' x S output queuesl; . ,,, one for each channel- to analytically define cross layer optimization problemsi an
commodity pair. A” the incoming traffic for commodity is  at the same time design feasible algorithms for their swmhuti
loaded on queué/; ;,. Output queues for commodity are [11]. In particular, joint algorithms for congestion covitand
loaded using packets stored in queliig;,,, according to the transmission scheduling have been proposed [12] which are
policy described in the next sections. Inside each node, agisle to jointly optimize source rate and link scheduling][13
for each commodity, a connection is defined between the ingub], [14] including also the power control operation [1H]6].
queuel,; ;,, and each of the output queu€s .. ,,,, on different The mathematical tools widely used in this new approach are
channels for the same commodity. Such connections will bgsentially optimization problem decomposition by Lagen
referred to asvirtual links in the following. Let~; . be the relaxation, sub gradient algorithms and Lyapunov stabilit
rate at which data is transferred from the input quéijg,, to  [17], [18]. The work presented in this paper is based on the
the output queu&’;, . ., i.e. the rate of the associated virtualecomposition of an optimization problem defined over the
link. Let ¥ denote the vector for alf,, . andV its feasible set, multi-channel network model.
which represents the rate region for the virtual links. TBe s The solution is related to the general scheduling algorithm
¥ will be defined in Section VI, based on a stability argumemresented in [10], [15]. In that theoretical formulatiomet
and in order not to modify the capacity region of the actugtability of the system is defined as the property of having
network. bounded queue lengths, and the capacity region for the nletwo

Let r; , . be the transmission rate associated with the floig defined as the set of input rates for which there exists an
between nodes andb on channel, carrying traffic for the algorithm which is able to keep the network stable. Given a
commoditys and7 be the corresponding vector for allp and set of input rates which lies inside the capacity region @f th
c. system, then the proposed algorithm is able to guarantee sta

The physical layer capacity for the link between nodes bility. The core of the scheduler is based on the maximimatio
andb on channek is denoted asv, ;.. Let us denote byo of a metric which depends on the rate allocated to each link,
the vector consisting ab, 5 . for all nodesa, b and channet. multiplied by the difference between the queue length at the
The feasible rate region, i.e. the set of all feasiblevectors, link receiver side minus the queue length at the transmitter
is denoted a3V, which depends on the interference modekide (thus the name “back pressure”). In [10], a congestion
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controller is added on top of the scheduling algorithm whictommodity and one output queue for each channel-commodity

is proved to converge to a solution close to the optimum. pair at each node. The queue lengths are used, at each time
The impact of an imperfect scheduler in the joint schedulirgiep, to make dynamic decisions about congestion control,

and congestion control can in general lead to poor perfocmarchannel loading and transmission scheduling. In particula

[19]. In case an imperfect scheduler is used, the joint &lyor  “virtual links” are introduced in order to model the channel

presented in [10] is proved to be able to guarantee the gyabiloading operation. The algorithm is analytically formelat

within a capacity region scaled by a factor which depends amd then tested by simulations in a simplified communication

the imperfect scheduler. This opens the way to the implemesnd interference scenario. The impact of numbers of channel

tation of reduced complexity schedulers. interfaces and commodities in the network performance is
The most challenging part of the previous approach refersestigated.

to the scheduling operation, which in general requires a cen

tralized a.nd pOtentially Very Complex maximization. TO aov |V FORMULAT|ON AS AN OPTIMIZATION PROBLEM

toward a practical solution, the following simplificatioimsthe

interference model are commonly considered: eachlliokly The goal of the proposed algorithm is to solve the following

interferes with a set)(!) of neighboring links, and each link optimization problem (see Table | for a summary of the symbol

has capacity; when scheduled. definitions):
In this case the scheduling, for a single channel scenario,
becomes a weighted maximum independent set problem. The _max ZGZ()\‘;) 1)
problem is in general NP-hard [20]. Clearly, a greedy cen- AT '
tralized algorithm which selects at each step the link wii t s.t.
highest metric and discards all the interfering links calniexe Z A< Z NS . Vn,s 2)
a capacity region reduced by a factoriofK where K is the e Pl
interference degree [19]. In [21], it is pointed out thatsac s <
greedy approach is optimal in graphs with particular stmect Ve S Z Ty VM C; 8 @)
A novel approach for the same problem is also proposed in J
[22], where a gossiping algorithm is used. erjw < Wi Vi,n,c 4)
Algorithms based on a maximal independent set scheduler s
(non weighted) are known for single hop networks and are 5 € Co() (5)
presented in [23], [24], but this approach can not be extgnde w e Co(W) (6)
to the multihop case. In this case a different scheduler tias t A e AR Y -
be used, which exploits additional information on the tcaffi n € An VL, S )

intensity or number of hops [25].

The closest work for multi-channel multi-radio wireless
networks is the one in [9]. The authors propose a channels (1) is the objective function
loading mechanism which, combined with a multi-channel « (2) is the flow conservation constraint at the input of each
maximal scheduler, is able to keep the network stable inside node
a subset of the capacity region. The network model is suche (3) is the flow conservation constraint at the output of
that each node is provided with an input queue for each €ach node
commodity and an output queue for each commodity-channele (4) is the constraint that the aggregate flow on a link must
pair. A known traffic rate is applied at each input queue for be less than the physical rate
each node and, based on a metric accounting for the queue (5) is the constraint on the flow in the virtual links for the
lengths of all interfering nodes, a channel loading polisy i channel loading: this will be specified to model different
defined. A multi-channel maximal scheduler is then applied requirements. Note the convex hull operator.
to schedule the backlogged links. This approach is extended (6) is the feasible rate regions for the actual links.
to the multihop case only for the case where information one (7) is the feasible set for the input rates.
the source rate is available and a congestion control is not

In the previous model:

considered. [ Symbols: ]
An optimization approach is also used in [8], where an PGS (x5) Utility function

network flow problem is defined to model routing and channel = [xs Injected input rate

loading. The solution is used to obtain an upper bound fof = G Flows associated to channel-link-commaodity connections

the performance. A greedy scheduler based on the outcome af= [/n.c] _ Flows that load output channel-commodity queues

. . . . . | w =Tway,] Physical rates associated to physical channel-link
the previous LP solution is then applied for solving the attu—g; Feasible "virtual rate region” for channel loading

resource allocation. A similar analysis is also found in [7] W Feasible rate region for actual physical inks
In this paper, a network structure similar to the one in [9]AZ Feasible input rates

is assumed, and the optimization approach is based on the TABLE |

decomposition presented in [11] and the argumentationGh [1 SYMBOLS

We propose an algorithm that works in a multihop scenario,

and whose simple channel loading mechanism is based only on

local information. The complexity is moved to the schedylin Based on the assumption on the utility functions and on
operation, which in general can be very complex. The pragposte convexity of the domain, (1)-(7) is a convex optimizatio
algorithm makes use of one input queue at each node for eacbblem.



V. NETWORK FLOW OPTIMIZATION were each’,, is a constant, which is set according the stability
The solution to the optimization problem is obtained via itd"d capacity preservation discussed in Section VI.

dual problem, relaxing all the constraints (2) and (3). Under this assumption, the maximization in (10)
Let U, = [U? ;] andUgue = [Us .. ,.¢] be the vectors for requires that for each noden and commodity s,
all the Lagrange multipliers associated to constraintsaf®) ¢ =  argmax. {(U;,;, —Us .,u)} IS chosen. If
(3) respectively. LelU = [Uj,, Ugyt] be the vector for all the (Ui,m — U;}c*,out) > 0 then sety; .. = T, and all
Lagrange multipliers. Yne = 0 for c # ¢, else set ally; . = 0 Ve (so that the
Relaxing the constraints (2) and (3), the Lagrange dustimmation is O; otherwise the summation would be negative).
function for the problem is: This is essentially the back pressure based algorithm fer th
virtual links 7.
The Lagrange function is convex thus the multipliers can be
L(U) = max {Z G (AD)+ computed using a sub gradient algorithm. It is known that a
AT | ns sub gradient for a given vector of Lagrange multipliers is th
vector consisting of all multiplicative terms in the Laggen
+ZU5M _ZT;‘M -+ Zﬁc + function. Note that such multiplicative terms are the resul
e R - of maximizations (8)-(10). With this choice, the Lagrange

multipliers are computed using a sequential algorithm Wwhic
; s s at each step, updates them based on the value of the local sub
+ Z Un.cout | ~Tnet Zrnmc ’ gradient. Lett be the iteration index, which can be associated
J with a time-slot in the system evolution. Thus the updating
where the optimization variable}, 7, w, 7 are still subject to rules for each multiplier at time+ 1 are:
constraints (4)-(7) (here, and in the following, constrsiare

s,c,n

omitted to simplify notation). man(t+1) = [ o () + a1 (A (U()+
The previous expression can be rewritten as: T
+ D 7 (U®) =>4 (U®) 11)
L(U) = max {Z GhL(A%) — AZU;?,M} + 8 ge ¢
A n,s

s s s U’rsz,c,out (t + 1) = [Uri,c,out(t) + Qa2 (:YZ,C(U(t))_F
+ max Z (qu,c,out - Uj,in)ri,j,c + (©)] +

i\j,s5c _fol}jﬁ(U(t))) . (12
{ )7‘2,0} :

—l—mgx Z ( S,in - U'Z,c,out (10)

5
s,n,c

Note that the Lagrange multipliers actually behave like

Note how each maximization represents a different “layetjueues in the case; = as = 1.
in the optimization task: In order to get a solution which converges to a point close to

« (8) congestion control; the optimum; andas should be set to be small constants. In

« (9) flow allocation, routing and physical rate allocation;the casen; = as = 1 the solution will be oscillating around

« (10) channel management (stability, channel loading, ..tHe optimum point.

Let A(U), 7#(U), w(U), %(U) be the vectors of optimum Note that at each timeé a new sub gradient has to be
values for a given set of Lagrange multipliers, that cleaidy computed, thus the optimizations (8)—(10) has to be refeate
pend onU. Each of them can be computed locally, based onljt each time slot. Lek(t), 7(t), w(t), ¥(¢) denote the vectors
on local information, except fof and@ in (9) which require solutions of the optimization optimization variables windhe
the knowledge of the feasible rate regibv. In particular, in time index has been explicitly shown, neglecting teto
order to optimize (9), for each link between nodesnd j simplify notation.
on channek: defines* = argmax, {(Us.,.. —Uf;,)}- The  Based on the previous argumentation, the proposed algo-
flow allocation is given by settingf;,c = w;jandry; . =0 rithm for joint congestion control, channel allocation and
for s # s*. Once chosen the flow to be potentially loaded onsgcheduling is presented in Algorithm 1.
physical link, the following maximization has to be perfad
Us* Us” ]+ _This is the VI. CHANNEL LOADING: STABILITY BY LYAPUNOV DRIFT

W = arg maXqygy {Z i,c,out — “jin

i,4,¢ [ wiJ;C}
3
back pressure algorithm [10]. B _ In the previous section the feasible rate set for the virtual
In Section VII, an assumption about a specific feasible rafiks used for the channel loading has not been specifiece Her
region will be discussed, and the design of a greedy alguritht js proved that a sufficient condition for stability recesr
to computew will be presented, together with a lower bounghe aggregated rate of the virtual links, used for the chlanne
performance index. o loading, to be bounded.
Su.ppose.for the moment that the only constraint imposed torpe stability of the system is derived using a Lyapunov
the virtual link rates is: argumentation. Consider the input rate for all commoditiss
ZVfw <T, fixed (no congestion control) and assume it falls within the

capacity region of the network.



Algorithm 1 Joint optimization leading to
At each time step, perform the following operations. , s
1) Congestion control. For each commodityand noden: A(U(t)) < B" - 262 Un,m +
n,s

Xi(t) = SHP{)\%QA%} {G;(Ai) - A;Us,ln(t)}

2
2) Channel allocation. For each commodityand noden:
¢ =argmaxc { (U; in(t) — Us c.ou(t)) } + Z (Z 'YZ,c) + Z (’YfL,c)Q- 17)
if (Us,in(t) — Us o out(t)) > 0 then n,s c n,¢,s
setd; .« (t) =T, and ally; .(t) = 0 for * ; ;
olso e (1) e (t) c#c Note thatify>,, (3. Vo) 2 es (v e)? IS bounded, the
set all 5 .(t) = 0 Ve drift becomes negative as the queue lengths increase above a
end if given threshold. Thus we define the feasible rate for theiairt
3) Scheduling and routing. For each link between nodesd;j link asW = {v; .:>" v, . < Ty}, with T';, suitable positive
on channek: constants. The proposed network model artificially adds the
s* = argmax, { (Uscou(t) — Usin(t)) } virtual links to the original network structure, thus we bav
if (U;;m(t) —U;fm(t)) > 0 then to make sure the resulting network is able to provide the
setis (t) = wi;o(f) and all7, (t) = 0 for s £ s* same capacity region as the original one. To guarantee such
else a property, a value for eadh, can be chosen as the smallest
set all7; .(t) =0 Vs value, greater than the maximum possible output rate for a
end if N node (which is bounded).
w = arg maxﬁ{ziyj,c [Uicﬁouf - Uﬁin] w]} VIl. SCHEDULING
4) Queues update: The scheduler defined in general terms in the previous

the queues are automatically updated according to the rulgsction requires a centralized optimization. Here a specifi
in (11) and (12) witha, = az = 1. communication and interference model is considered which
reduces the problem to a maximum weighted independent
set with some constraints imposed by the reduced number of
The considered Lyapunov function Is= ", (U ,,)*+ interfaces. Note that the maximum weighted independent set
Yoo oUs . o)? and the proof is derived from the one inproblem (defined for the single channel case) is known to be
o). NP-Hard [20].
Consider the queue updating rules (11), (12) with = Assume a network withV nodes,C' channels and inter-
as = 1. The drift associated to the Lyapunov functidn faces per node.

is denoted wWithA(U(t)) = E [L(U(t 4+ 1)) — L(U(¢))|U(¢)] A secondary interference model is considered where each
and it can be easily bounded as radio link (7, j, ¢) interferes with a set of surrounding links in

the same channel(4, j, ¢). Inside this set only one transmission
A(U(t) <B+2 Z Us inE X ()] + (13) is possible at a given time. Each link has a known physical rat
s ¢i.j.c when scheduled (without interference).
It is known [9], [19] that a greedy sequential and centralize
—9F Z re o US.() —US, (]| U@ | +  (14) algorithm that at each step selects the link with the highest
Sehe » metric and drops all the interfering links, can reach attleas
a fraction 8 = 1/K of the maximum value in (9), where
(15) K is the maximum number of links that cannot be scheduled
because of a given link has already been scheduled. Note that
5 the constraint on the number of interfaces can cause a link
s s \2 activation to prevent the use of other links in differentrahels.
Z (Z ’Ymc> + Z(%»c) (16) Thus K depends on the topology, number of channels and
e e s interfaces.
where B is a constant term depending on théerms. Thus, this greedy scheduler allows for the solution of the
According to Corollary 3.9 in [10], if the input ratas Whole optimization problem to converge to the optimum re-
(which is loaded only on the input queue) is such th@rred to a capacity region scaled by a factof10].
AS 4+ ¢ ¥n,s (for a smalle) lies inside the capacity region, The previous lower bound is very conservative and the actual
then there exists a randomized schedulingi and 4, such Performance of the greedy procedure is expected to be much
that better than the stated bound. Some reasons are listed below:
i) the number of contending nodes is actually only the
number of backlogged nodes with positive back pressurs, thu

igc,s

—2F Z ’yfz,c[UrSL,in(t) - Uz,c,out(t)] ‘ U(t) +

c,n,s

B> Ane=D Fne| =€+ AVn,s,c as long as the network is not heavily loaded, this number is
c i much smaller thari;
i) the loss in optimality3 represents itself a lower bound.
E Z;Z e —Ase|l =0vn,s The bound assumes that each time a link is scheduled, all the
el ' dropped links have a weight which is close to the one of the

scheduled link.
and thus choosing a schedulew, ¥ according to the maxi- i) the maximal scheduling is close to the maximum
mization in (9) and (10), then (14) and (15) can be boundsdheduling in most practical topologies [21].



In the following, the proposed cross layer algorithm hasbe:

Aggregated ut|||ty

tested using such a greedy centralized scheduler for a gi 5_‘:;,_,_.;:_: ...... o ey
topology. e
-2r é.__,é———_A-_ —— - - = - =4 - —
VIIl. SIMULATION RESULTS A" ¢ 7T S2

In this section the whole algorithm is tested using the gyee: -ar
centralized scheduler previously described. The predemte
sults are referred to a simplified topology and interferen g? B A K
models and give some insight on the network performance L+ S=4
a function of the number of channels number of interfaces ol
per nodel, and number of commoditieS. A * o ce1

0 C=2
A. Grid topology -lof A C=4
E St C=8

The algorithm has been simulated in a single netwo *
snapshot composed by = 16 nodes, placed in a regular 2 — s 3 7 s p 7 s
mesh with a distance of 0.2 units between adjacent nodes. #of Interfaces

® & ® O Fig. 3.  Total utility for different numbers of channels, irfices and
commodities.
@ @& O O0-—
[qV)
S increases, showing that the spatial reuse of the medium is
® ©® 0 O exploited.
© @ O ©
Aggregated rate
. =source O =sink 0.8 ' j
B-— B-— A= R
08r : o7 s=a 1
Fig. 2.  Topology and commodities. Each number represents aretiff ,-I f/b
commodity. o7k / ; |
N )

Each node can potentially communicate with all neighbo 06y D,’ P s=2 1
within a distance of 0.3 and, when transmitting, it cause ¢ osl 4 )/ ‘-g'-i"/"’*‘ A e +
interference to neighbors within a distance of 0.3. All tbhene L %" A S g
munication links have the same capacity, which has been 0.4r A o
equal tol/C, in order to allow for a comparison among result i g gz;
with different number of channels. Commaodities source at 03F s A Co4
destination have been associated with distinct nodes diocpr oal - o+ ce8
to the scheme shown in Figure 2. The utility function is th ' .
same for all the nodes and is defined @§(z) = log(x), oal—T ‘ ‘ ‘ ‘ ‘ ‘

1 2 3 4 5 6 7 8

which implements a fairness based congestion control. T
system has been tested with= {1,2,4,8}, I = {1,...,C},
S ={1,2,4}.

4.

# of Interfaces

Aggregated transmission rate for different numbershudnnels,

As can be seen from Figure 3, in all cases the aggregatﬁarfaces and commodities.
utility increases as the number of interfaces increasegwaAy,
the additional utility gained adding a new card decreaséseas In Figure 5 the average queue length in the stationary
number of cards increases. For instance, in cage f8, only regime is shown as a function of the number of interfaces and
4 interfaces are enough for achieving the maximum utilitisThchannels. As the number of interfaces increases the average
is in accordance with the asymptotic analysis presented]in [length decreases. This has an impact on the end-to-end, delay
Please note that the utility is negative because a logaiithmvhich results to be smaller if a higher number of interfaces i
function is used and, in the simulated scenario, each flomsturused.
out to be smaller than one. Moreover the utility decreases asAs the number of channels increases, the queue length
the number of concurrent flows increases. This is due to tbecreases as well. Note in particular that in all cases 4,
specific scenario where the rate experienced by a single fleiv= {4, 8} the maximum throughput is reached (see Figure 4).
decreases as the number of flows increases. On the other hand a higher number of channels allows for a
Even if the throughput maximization is not the main goakeduced queue length and thus a reduced delay.
of the simulated algorithm, in Figure 4 the aggregated trans The proposed algorithm has been proved to asymptotically
mission rate of all commodities is shown. Similarly to the&onverge to the solution of the joint resource allocatioobpr
utility behavior, the aggregated rate increases as the eunfb lem, but the proposed analysis gives no insight on the time
interfaces increases and the maximum value is reached ugieguired for the algorithm to converge. Figure 6 shows achipi
a number of interfaces smaller than the number of channdiend for the time evolution of aggregated queue lengths,
As the number of commodities increases the aggregated ratgjregated transmitted rate by the sources and aggregated
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Fig. 5. Average queue length for different numbers of chaaetl interfaces. Fig. 6. System time evolution. The curves shown are averagedsomoving
S =4. window of 100 samplesC' =8, S =4, [ = 4.

x 10" Convergence time

received rate at the sinks. As can be seen, the converge 25— ‘ ‘ w
. . . . . —o--C=1
is reached after a relatively high number of iterations. Areno it o= G2
exhaustive investigation of the convergence time is prtesen ' "—A--C=4
Figure 7 where the time needed to reach a stationary condit o b el
is plotted for different number of interfaces, channelsd ar \
commodities. As can be seen, the convergence time decre 15l '?\ ' i
as the number of interfaces increases, and increases as -
number of channel or commodities increases. g WA

Our interpretation for this behavior is that, as the numifer = 1} W 1
gueues in the system increases, more time is required for R
the queues to be served and thus reach a stable configurat v
This transient phase could be interpreted as a route discov EEN g ’\‘|>. i
mechanism. Increasing the number of interfaces leads tc A:'\A_\\\A_\"'D-—-—D—‘—-—b— - b
higher number of concurrent transmissions, which speeds NS S e Sl culuie el duliaie d
the convergence process. 1 2 3 4 5 6 7 8

# of interfaces

In some cases the time required for convergence is ve.,
long. This can limit the practical implementation of such ap. ) )

| ithm in an actual network. A reason for the slow co 7.  Number of slots required for convergence. It is meaba® the
algor r'humber of iterations needed to reach an aggregated quelt leitgin 10%
vergence is related to the routing mechanism, which imposgshe stationary value. Dasheff: = 2; Dash-dotted:S = 4.
no constraints on the feasible paths for the traffic. Thditraf
thus can travel in all directions until a stable configunatis

reached. confirming that the marginal utility and rate gained adding a
It would be interesting to define a policy for setting a redlicanterface is a decreasing function of the number of inter$ac
number of feasible paths for each commodity. In Figure 10 (Figure 11) it is shown the ratio between the

Convergence delay also depends on the particular congesgaperienced utility (rate) for a given set of parameters ted
controller. A detailed investigation is out of the scope it maximum utility (rate) achieved with the highest number of
paper and represents an open research issue as pointed ourténfaces. Results are averaged ower= {1,2,4} and 10
[11]. random topologies for each value 6f Two different node
densities are considered, which are obtained setting #rage
number of nodes within the communication and interference

The algorithm has also been tested using random topologiagge to 3 and 7.
where nodes are uniformly placed in a unit square area.The behavior is similar to the one already described for the
Presented results are averaged over 10 random topologis. @rid topology. It can be noted that a higher node densitynallo
connected topologies are considered. As in the previous, cder a reduced number of interfaces needed to reach the same
each node can potentially communicate with all neighbotgility and rate values. Once again this is in accordancé wit
within a distance of 0.3 and, when transmitting, it causeke analysis in [2].
interference to neighbors within a distance of 0.3. In Figure 12 the rate scaling factor with respect to the singl

In Figure 8 and Figure 9 the utility and the rate for differenthannel case is plotted, as a function of the ratio between th
number of interfaces, channels and commodities are showamber of channels and the number of interfaces. The bahavio
Results are similar to the ones in Figure 3 and Figure &, similar to the one described in [2].

B. Random topology
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Aggregated utility

with the maximum number of interfaces. The negative ratio istedbin
order to provide an easier comparison with Figure 11. Resultsaveraged
over three different numbers of commoditi€s= {1,2,4} and 10 random
topologies. Node density:[f= nodes within communication range) dotted:
D =7, dashed:D = 3.
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Fig. 9. Aggregated utility for different numbers of channéfgerfaces and
commodities. Results are averaged over random topologids fitodes in
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C. Comparison with results in [8]

# of interfaces

Fig. 11. Fraction of the maximum rate. Results are averaged thvee
different number of commoditie§ = {1,2,4} and 10 random topologies.
Node density: D= nodes within communication range) dottefh = 7,
dashed:D = 3.

The scenario considered in [8] has been reproduced and
a comparison between the performance of our algorithm and
the one presented in [8] has been made. The algorithm in [Bpus our solution is closer to a practical implementation.
formulates the resource allocation as a network flow problemA grid 5 x 6 topology is considered; each node has at most
and solves a linear program problem in order to define an upgeneighbors. 4 sinks for the traffic are considered (S=4) and
bound on the achievable performance. Then a greedy algorithesults are averaged usidg@, 10, 15,20, 25} traffic sources.
is applied for the scheduling operations. All the sourcegehaEach sink is placed on a different quadrant. Sources are
the same traffic requirements (no congestion control) aed tbonnected to the closest sink. Results are shown in terneof t
objective is to find the maximum input rate scaling factor forggregate rate scaling factor with respect to the singlarstla
which a solution exists. Note that our algorithm aims at thease. In this formulation each channel has a fixed capacity,
utility maximization rather than to the maximization of theso that the total bandwidth is increasing with the number of
input rate scaling factor. Nonetheless, assuming a Idgaiit channels.
utility, fairness among different flows is enforced, thusiping As [8] does not provide all the details of the considered
our input rate scenario towards the one defined in [8]. scenario, in trying to reproduce it in our framework we had
Note that the optimization in [8] uses a centralized LP solte make some assumptions. Although this makes a detailed
tion, while our algorithm can be run in a fully distributed yya quantitative comparison difficult, it still allows to veyithat the
as long as a distributed scheduling mechanism is availakl@o approaches exhibit consistent behaviors. Figure 1%/sho



Fraction of single channel capacity

A queue at the input of each node for each commodity and a

1+ FY T T .
N + D=3 queue at the output of each node for each channel-commodity
ool TR L et pair have been used; a mechanism for loading the output
RN gueues on different channels has been defined introduceng th
08f DRI 1 notion of virtual links.
orl \\ AN | The algorithm has been presented for a general communi-
' NN cation and interference scenario. In order to test the behav
06} RN N ] of the full algorithm, an instance of the problem, based on
: _\»\ S a simplified communication and interference model, has been
05¢ S ,\‘\ ~_ N 1 simulated using a greedy centralized scheduler.
oal g ‘_f_\”\ } "'\.\‘ | The network performance has been evaluated as a function
RN Tl of the number of channels, interfaces and traffic flows. The
0al BRI results are consistent with previous theoretical findiraysd
T confirm the goodness of the approach. On the other hand, the
02 5 . y . s specific features of our algorithm make it more suitable for

3 4
# of Channels / # of Interfaces

Fig. 12. Rate scaling factor with respect to the single cbhmase, as
a function of the ratio between the number of channels and thmaber
of interfaces. D is the average number of nodes in the commioncand
interfering range. Results are referreddo= 6, I = {1,2,3,4,5,6} and
averaged ovefS = {1,2,4} and 10 random topologies.

(1]

(2]
(3]

the rate gain in the two cases as a function of the number ]
channels and interfaces. It is clear from these resultsttieat
two approaches, though based on different techniques, hayg
a qualitatively similar behavior. On the other hand, whhe t
scheme in [8] is completely centralized and is more useful d$!
a benchmark than as a practical solution, the features of our
scheme make it easier to implement and therefore pragticali7]
relevant.

(8]
(9

Rate gain w.r.t. the (I=1,C=1) case

(20]

(11]

(12]
(13]

(14]

(15]

05
! [16]

# of channels

Fig. 13. Rate gain factor with respect to the single chanasécDotted: our [17]

algorithm. Line: copied from Figures 7 and 8 in [8]
(18]

[19]
IX. CONCLUSIONS
A joint congestion control, channel allocation and schiedu
algorithm for multi-channel multi-interface multi-hop ngless [21]
networks has been presented. The problem of maximizing a
utility function of the source rate has been defined as
optimization problem and then solved by a dynamic algorithm
The algorithm decomposes the whole optimization in diffefe3]
ent functional sub-optimizations and uses the queuesHeamt [24]
a way to allow a joint solution of different optimization k&s

| [20]

practical implementation in a distributed setting.
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