Data Broadcast in Asymmetric Wireless Environments*

Nitin H. Vaidya

Sohail Hameed

Department of Computer Science
Texas A&M University
College Station, TX 77843-3112
E-mail: {vaidya,shameed}@cs.tamu.edu
Phone: (409) 845-0512
FAX: (409) 847-8578

Abstract

With the increasing popularity of portable wire-
less computers, mechanisms to efficiently transmit in-
formation to such clients are of significant interest.
The environment under consideration is asymmetric
in that the information server has much more band-
width available, as compared to the clients. In such
environments, often it is not possible (or not desir-
able) for the clients to send explicit requests to the
server. It has been proposed that in such systems the
server should broadcast the data periodically. One
challenge in implementing this solution is to deter-
mine the schedule for broadcasting the data, such that
the wait encountered by the clients is minimized. A
broadcast schedule determines what is broadcast by
the server and when. In this paper, we present algo-
rithms for determining broadcast schedules that mini-
mize the wait time. Simulation results are presented to
demonstrate that our algorithms perform well. Vari-
ations of our algorithms for environments subject to
errors, and systems where different clients may listen
to different number of broadcast channels are also con-
sidered.

1 Introduction

Mobile computing and wireless networks are fast-
growing technologies that are making ubiquitous com-
puting a reality. With the increasing popularity of
portable wireless computers, mechanisms to efficiently
transmit information to such clients are of significant
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interest [13]. For instance, such mechanisms could be
used by a satellite or a base station to communicate
information of common interest to wireless hosts. Ap-
proaches for determining what to transmit and when,
is the subject of this paper.
under consideration, the downstream communication

In the environment

capacity, from server to clients, is relatively much
greater than the upstream communication capacity,
from clients to server. Such environments are, hence,
called asymmetric communication environments [2].
In an asymmetric environment, broadcasting the infor-
mation is an effective way of making the information
available simultaneously to a large number of users.
For asymmetric environment, researchers have pre-
viously proposed algorithms for designing broadcast
schedules [4, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19]. Two
metrics are used to evaluate these algorithms:

e Access time: This is the amount of time a client
has to wait for some information that it needs.
It is important to minimize the access time so as
to decrease the idle time at the client. Several
researchers have considered the problem of min-
imizing the access time [4, 6, 10, 11, 12, 7, 3, 2,
18, 19]

e Tuning time: This is the amount of time a client
must listen to the broadcast until it receives the
information it needs. It is important to minimize
the tuning time, because the power consumption
of a wireless client is higher when it is listening
to the transmissions, as compared to when it is
in a doze mode [9, 10, 11, 17].

This paper presents an approach to minimize the
access time. We consider a database that is divided
into information items (or items for short). Thus, a



broadcast schedule specifies when each item is to be
transmitted.
The contributions of this paper are as follows:

e Square-root rule: We show that the access time
is minimized when the frequency of an item (in
the broadcast schedule) is inversely proportional
to the square-root of its size and directly propor-
tional to the demand for that item (characterized
as demand probability). This result is a general-
ized version of a result presented in [4, 18].

Impact of errors on the scheduling policy is also
evaluated. In an asymmetric environment, when
a client receives an information item containing
errors (due to some environmental disturbance),
it is not always possible for the client to request
retransmission of the information. In this case,
the client must wait for the next transmission
of the required item. We evaluate how optimal
broadcast frequencies of the items are affected in
presence of errors.

We also consider systems where different clients
may listen to different number of broadcast chan-
nels, depending on how many they can afford. In
such an environment, the schedules on different
broadcast channels should be coordinated so as
to minimize the access time for most clients.

e For each of the broadcast environments (i.e., with
or without errors, and with or without multiple
broadcast channels), we determine a theoretical
lower bound on the achievable access time. This
lower bound is used to determine efficacy of pro-
posed scheduling algorithms.

e We propose a simple “on-line” algorithm, based
on the above square-root rule for all the environ-
ments under consideration. The on-line algorithm
can be used by the server to determine which item
to broadcast next. On-line algorithms are of sig-
nificant interest as they are easy to adapt to time-
varying demands for the information items. The
access time achieved by the on-line algorithms is
shown to be very close to the theoretical lower
bound. Also, performance of our on-line algo-
rithm is significantly better than that proposed
previously [17].

e On-line algorithms use a decision-making mecha-
nism to determine which information item is to
be broadcast next. For the above on-line algo-
rithm, time complexity of the decision mechanism
is linear in the number of information items in

the database. This may render the algorithms
impractical if number of information items is too
large. To alleviate this shortcoming, we present
a modified on-line algorithm, that provides the
ability to trade access time with time complex-
ity.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some terminology. Section 3 derives
the square-root rule, and presents two on-line algo-
rithms. The impact of errors is analyzed in Section 4.
Section 5 considers an environment where different
clients may be listening to different number of chan-
nels (depending on what they can afford). Section 6
evaluates the performance of our schemes. Related
work is summarized in Section 7. A summary is pre-
sented in Section 8.

2 Preliminaries

This section introduces much of the terminology
and notations to be used in rest of the paper.

e Database at the server is assumed to be divided
into many information items. The items are not
necessarily of the same size. However, results for
systems with identical item sizes can be obtained
as a special case of the results presented here.

e The time required to broadcast an item of unit
length is referred to as one time unit. Hence time
required to broadcast an item of length [ is [ time
units. Note that unit of length and time unit may
be used interchangeably because of the way they
are defined.

e M = total number of information items in the
server’s database. The items are numbered 1
through M.

e [; represents length of item i.

e To develop a theoretical foundation for our algo-
rithms, we assume that the broadcast consists of
cycle of size N time units. The results presented
in the paper also apply to non-cyclic schedules
(for non-cyclic schedules, effectively, N — oo).

e Instance of an item : An appearance of an item
in the broadcast is referred to as an instance of
the item.

e Schedule : Schedule for the broadcast cycle is an
order of the items in the cycle.



e Frequency of an item : frequency f; of item 1 is
the number of instances of item 7 in the broadcast
cycle. The f; instances of an item are numbered
1 through f;. Size of the cycle is, therefore, given
by N = Ezﬂi1 fil; , where [; is the length of item
1.

e Spacing : The spacing between two instances of
an item is the time it takes to broadcast infor-
mation from the beginning of the first instance
to the beginning of the second instance. s;; de-
notes the spacing between j-th instance of item
¢ and the next instance of item ¢ (1 < j < f;).
Note that, after the f;-th instance of an item in
a transmission of the broadcast cycle, the next
instance of the same item is the first instance in
the next transmission of the broadcast cycle.

Spacing between 1st and 2nd
instances of Item 1
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Figure 1: Showing a part of broadcast cycle (Example

1)

Example 1: As an example, refer to Figure 1. The
figure shows a part of a broadcast cycle, which con-
tains two instances of item 1, and one instance each of
items 2 and 3. The lengths of the items are 10, 8 and
4 time units respectively. The spacing between the
two instances of item 1 is the time from the beginning
of first instance of item 1 until the beginning of second
instance, which is equal to 10 4 8 + 4 = 22 time units.
Thus, if a client needs item 1 some time (uniformly
distributed) between the two instances of item 1, then
the average wait is 22/2 = 11 time units. To reduce
this wait, item 1 will have to be transmitted sooner,
however, doing so will require one of items 2 or 3 to
be transmitted later, causing an increase in the access
time of a client needing that item. This example illus-
trates the need for appropriate scheduling of items in
the broadcast. a

o Item Mean Access Time: Item Mean Access Time
of item ¢, denoted ¢;, is defined as the average wait
by a client needing item ¢ until it starts receiving
item ¢ from the server. Provided that a client is

equally likely to need an item ¢ at any instant of
time, ¢; can be obtained as,
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where N = Z fil;
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If all the f; instances of item 7 are equally spaced,
that is, for some constant s;, s;; = s; (1 < j < fi),
then, it follows that, s; = N/f;. In this case, the
expression for ¢; can be simplified as follows:

s; = N/f; (1)

e Demand probability : Demand probability p; de-
notes the probability that an item needed by a
client is item 1.

e Overall Mean Access Time : Overall Mean Access
Time, denoted ¢, is defined as the average wait
encountered by a client (averaged over all items).
Thus,

M fi 52

M
= S-S (159)
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When s;; = s; (1 < j < f;), the above equation
reduces to

1 M
t = E;&'Pi (2)
=

Note:

All results presented here remain valid if p; in the
above expression is replaced by w;, where w; may be
interpreted as weight of item i. The weights of all
items do not have to add to 1 (the fact that the p;’s
add to 1 does not have any impact on our algorithms).
For instance, weight w; may be obtained as a product
of the “priority” of item ¢ and the demand probability
of item i. When p; is replaced by w;, t is interpreted
as a cost metric instead of access time.
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Figure 2: Constructing a Broadcast Schedule

3 Proposed Scheduling Schemes

Figure 2 depicts an abstract view of the procedure
for constructing a broadcast schedule. The first block
in Figure 2 maps the demand probability distribution
into “optimal” item frequencies. Recall that frequency
of an item is the number of times the item is to be
broadcast in a cycle. Having determined the optimal
frequencies, second block in Figure 2 uses the frequen-
cies to determine the broadcast schedule. Our goal is
to perform the functions of the two blocks in such a
way that overall mean access time, t, is minimized.
Note that Figure 2 gives a low-level abstraction of
the procedure. This helps in obtaining an expression
for optimal overall mean access time. Algorithms pre-
sented here do not use this two-step procedure, how-
ever, they are formulated based on results obtained
from an analysis of the above procedure.

3.1 Mapping Demand Probabilities to
Item Frequencies

We first present theoretical results that motivate
our scheduling schemes. The first observation stated
in Lemma 1 below is intuitive. This observation also
follows from a result presented in [12], and has been
implicitly used by others (e.g., [3, 4, 18]).

Lemma 1 The broadcast schedule with minimum
overall mean access time results when the instances
of each item are equally spaced.

Proof of the lemma is omitted here for brevity. In
reality, it is not always possible to space instances of
an item equally. However, the above lemma provides a
basis to determine a lower bound on achievable overall
mean access time. Note that, while Lemma 1 suggests
that spacing between consecutive instances of item 2
should be constant, say s;, s; need not be identical to
the spacing s; between instances of another item j.
The objective in this section is to determine the
optimal frequencies (f;’s) as a function of the prob-
ability distribution (p;’s) and the length distribution
(l’s). We assume the ideal situation, as implied by
Lemma 1, where instances of all items can be equally

spaced. This assumption, although often difficult to
implement, does lead to a useful result state in The-
orem 1. This result is a generalization of a result de-
rived in [4, 18]. The result in [4, 18] applies only to
items of identical size, whereas, our result applies to
items of differing sizes. We use this result to design
on-line broadcast scheduling algorithms, which have
not been investigated previously.

Theorem 1 Square-root Rule: Given the demand
probability p; of each item i, the minimum overall
mean access time, ¢, is achieved when frequency f; of
each item 1 is proportional to /p; and inversely pro-
portional to \/I;, assuming that instances of each item
are equally spaced. That is,

bi
fioy /7
Proof: [15] presents the proof. O

For cycle size N, E;VI:1 fili = N.  There-
fore, the above theorem implies that, f; =

M .
(N Pi/li> / (Ej:l w/pjlj). Also, as spacing s; =
N/f;, a consequence of the above result is that, for
overall mean access time to be minimized, we need

Vi
VPi

As shown in [15], from Theorem 1 it follows that,
the optimal overall mean access time, named ¢

8; X

optimal’
is:
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1
toptimal ) (§ : Vpili) (3)
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toptimal represents a lower bound on achievable
overall mean access time. As the lower bound is de-
rived by assuming that instances of each item are
equally spaced, the bound, in general, is not achiev-
able. However, as shown later, it is possible to
achieve performance almost identical to the above
lower bound.

Now we present two scheduling algorithms. The
first “on-line” algorithm determines which item should
be broadcast next by the server. The second on-line al-
gorithm distributes the items into different “buckets”,
to reduce time complexity of on-line decision-making.

3.2 On-line Scheduling Algorithm

Whenever the server is ready to transmit a new
item, it calls the on-line algorithm presented here.



The on-line algorithm determines the item to be trans-
mitted next using a deciston rule — this decision rule
is motivated by the result obtained in Theorem 1. As
noted previously, Theorem 1 implies that, for optimal
performance, instances of an item ¢ should be equally
spaced with spacing s;, where s; & +/l;/p;. This can
be rewritten as

2
8; Di

%

= constant, Vi,1<:i< M (4)
The above observation is used in our algorithm, as
presented below. We first define some notation. Let
Q@ denote the current time; the algorithm below de-
cides which item to broadcast at time Q. Let R(j)
denote the time at which an instance of item j was
most recently transmitted; if item j has never been
broadcast, R(j) is initialized to —1.! Note that, R(j)
is updated whenever item j is transmitted. Let func-
tion F(j) denote (@ — R(j))2 pi/liy 1 <j <M. The
first on-line algorithm is named Algorithm A.

Algorithm A: ON-LINE algorithm:

Step 1: Determine maximum F(j) over all items j,
1<j< M.
Let Fpnqp denote the maximum value of F(j).
Step 2: Choose item ¢ such that F (i) = Fpqz-
If this equality holds for more than one item,
choose any one of them arbitrarily.
Step 3: Broadcast item ¢ at time Q.
Step 4: R(z) = Q.

Q — R(t) is the spacing between the current time,
and the time at which item 7 was previously transmit-
ted. Note that, the function

F(i) = (Q - B@)' T

is similar to the term s? p;/l; in Equation 4 above.
The motivation behind our algorithm is to attempt
to achieve the equality in Equation 4, to the extent
possible.

Example 2: Consider a database containing 3 items
such that p; = 1/2, p; = 3/8, and p3 = 1/8. Assume
that items have lengths [; = 1, l; = 2 and I3 = 4 time
units. Figure 3 shows the items recently broadcast
by the server (up to time < 100). The above on-
line algorithm is called to determine the item to be

1The choice of initial value will not affect the mean access
time much, unless the broadcast is for a very short time. For
broadcasts that last a short time, other initial values may per-

form better. For instance, R(j) may be initialized to —\/E.

transmitted at time 100. Thus, @ = 100. Also, from
Figure 3, observe that R(1) = 95, R(2) = 93, and
R(3) = 96. The on-line algorithm evaluates function
F(j) = (Q— R(5))*p;/l; for j = 1,2,3 as 12.5, 147/16
(=9.1875) and 0.5, respectively. As F(j) is the largest

for j = 1, item 1 is transmitted at time 100. a
e 1 2 = 1+ 4 {

2 1 2 1 3 o
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Figure 3: Illustration of the on-line algorithm (Exam-
ple 2)

It can be shown that, algorithm A always produces
a cyclic schedule, if the ties in step 2 of the algorithm
are resolved deterministically [15]. Performance mea-
surements for the above algorithm are presented in
Section 6. Our algorithm improves access time by a
factor of 2 as compared to the probabilistic on-line
algorithms presented in [17, 18]. In general, the pro-
posed on-line algorithm performs close to the optimal
obtained by Equation 3. However, it is also possible
to construct scenarios where the schedule produced by
the algorithm is not ezactly optimal, as demonstrated
in the next example.

Example 3: Consider the following parameters:
M = 2, ll = l2 = 1, P11 = 0.2—|—€, D2 = ].—pl,
and € < 0.05. In this case, the on-line algorithm pro-
duces the cyclic schedule (1,2), i.e., 1,2,1,2,..., which
achieves an overall mean access time of 1.0. On the
other hand, the cyclic schedule (1,2,2) achieves overall
mean access time 2.9/3+2¢/3 < 1. Thus, in this case,
the on-line algorithm is not optimal. However, the
overall mean access time 1.0 of the on-line algorithm
is within 3.5% of that achieved by the cyclic schedule
(1,2,2). O

3.3 On-line Algorithm with Bucketing

A drawback of on-line algorithm A above is the
computational cost of O(M) required to evaluate Fpqy
in step 2 of the algorithm. This cost can be reduced
by partitioning the database into “buckets” of items,
as follows.

Divide the database into k buckets, named B;
through By. Bucket B; contains m; items, such that
Ele m; = M, the total number of items in the



database. We maintain the items in each bucket
in a queue. At any time, only items at the front
of the buckets are candidates for broadcast at that
time. Define ¢; = (X ;.p, pi)/m; as the average
demand probability of the items in bucket B;, and
dj = (Xicp, l)/m; as the average length of the items

in bucket B;. Note that Ele m;q; = 1. Let @ be the
current time and R(¢) be the time when item 7 was
most recently broadcast. Let I; denote the item at the
front of bucket B;. As shown in citevaidya96techl17,
for optimality, the following condition must hold when
bucketing is used: If item ¢ is in bucket B;, then

spacing s; & 4/d;/g;

In other words,
3]2' dj
95
Let G(j) denote (Q — R(Ij))2 g;/dj, 1 < j < k. Func-
tion G(j) is analogous to function F(j) used in on-line
algorithm A in the previous section. The on-line algo-

rithm with bucketing, named Algorithm B, is obtained
from the above result.

Algorithm B: ON-LINE WITH BUCKETING:

= constant, Vj,1 < j < M5)

Step 1: Determine maximum G(j) over all buckets j,
1< j<k. Let Gyqs denote the maximum
value of G(j).

Step 2: Choose a bucket B; such that G(i) = Gnqz-

If this equality holds for more than one bucket,

choose any one bucket arbitrarily.

Step 3: Broadcast item I; from the front of
bucket B; at time Q.

Step 4: dequeue item I; at the front of the bucket B;
and enqueue it at the rear of B;.

Step 5: R(I;) = Q.

The above algorithm is quite similar to the original
on-line algorithm A, except that the decision rule is
applied only to items at the front of the k& buckets.
Hence, the algorithm needs to compare values for only
k items giving the time complexity of O(k). Observe
that all items within the same bucket are broadcast
with the same frequency. This suggests that the (p;/l;)
values of all items in any bucket should be close for
good results.

The Optimal Overall Mean Access Time resulting
from the above algorithm, as shown in [15], is given
by

2

k
1
topt_bucket ) Z mj\/q;d; (6)
=1

Similar to ¢ opt_bucket is a lower bound on

optimal’ t
performance achievable with bucketing.

The above equation shows that topt_bucket is de-
pendent upon the selection of values for m;’s under
the constraint that E§:1 m; = M. Optimizing the
bucketing scheme for a given number of buckets k re-
quires that the m;’s be chosen appropriately, such that
the above equation is minimized.

For our simulations, we use a heuristic to determine
the membership of items to the buckets. The heuris-
tic for determining the membership of an item 2 to a
bucket B; is as follows:

Let Rpin = min;+/p;/l; and Rp,.p = max;\/p;i/l;.
Let § = Rpmaz — Rmin- If, for item i, /p;/l; =
R, in, then item i is placed in bucket B;. Any
other item ¢ is placed in bucket B; (1 < j < k) if
(J—16/k < (/Pi/li — Rmin) < (§6/k). This is
pictorially depicted in Figure 4. The above heuristic
executes in O(M) time, and needs to be executed once
for given probability and length distributions.

5/k k=5

Rmin - Rmax
| | | |
I I I I

bucket B1 B2 B3 B4 B5

Figure 4: Heuristic for assigning items to & buckets:
The interval (Rpin, Rmaqz) is divided into k equal-sized
sub-intervals. An item i whose \/p;/l; value belongs
to the j-th sub-interval is assigned to bucket B; (1 <
j < k).

3.3.1 Comparison of Buckets and Multi-disk

[3]

The notion of a bucket is similar to that of a broad-
cast disk in the multi-disk approach proposed by
Acharya et al. [3]. Therefore, the result in Equa-
tion 5 can be used to determine suitable frequencies
for the broadcast disks. The differences between the
two approaches are as follows: (a) Our algorithm is
on-line in that the broadcast schedule is not predeter-
mined. This allows our algorithm to quickly react to
any changes in parameters (such as demand probabil-
ities). (b) The algorithm in [3] imposes the constraint
that the instances of each item be equally spaced at
the risk of introducing idle periods (or “holes”) in
the broadcast schedule (the holes may be filled with
other information). Our algorithm also tries to space
items at equal spacing, however, it does not enforce
the constraint rigidly. Therefore, our algorithm does
not create such holes. The argument in favor of a



rigid enforcement of equal spacing, as in [3], is that
caching algorithms are simplified under such condi-
tions. However, it is possible to implement caching
algorithms similar to those in [3] for the bucketing
scheme as well. Evaluation of the caching algorithms
is beyond the scope of this paper. (c) Our algorithm
works well with items of arbitrary sizes. [3] is con-
strained to fixed size items. (d) Acharya et al. do not
have a way of determining the optimal frequencies for
the different disks, whereas, our algorithm automati-
cally tries to use the optimal frequencies.

4 Effect of Transmission Errors on
Scheduling Strategy

In Section 3, we presented on-line algorithms for
determining broadcast schedules. These algorithms
do not take into account transmission errors. In this
section, we modify our basic approach to design broad-
cast schedules in the presence of transmission errors.

In the discussion so far, we assumed that each item
transmitted by the server is always received correctly
by each client. As the wireless medium is subject to
disturbances and failures, this assumption is not nec-
essarily valid. Traditionally, in an environment that
is subject to failures, the data is encoded using error
control codes (ECC). These codes enable the client to
“correct” some errors, that is, recover data in spite of
the errors. However, ECC cannot correct large num-
ber of errors in the data. When such errors are de-
tected (but cannot be corrected by the client), the
server is typically requested to retransmit the data.

In the asymmetric environment under consideration
here it is not always possible for the client to ask the
server to retransmit the data.? If a client waiting for
item 7 receives an instance of item i with uncorrectable
errors, the item is discarded by the client. The client
In this
section, we evaluate the impact of uncorrectable errors
on the scheduling strategy for broadcasts.

must wait for the next instance of item 1.

Suppose that uncorrectable errors occur in an item
of length ! with probability E(l).> [15] shows that
the overall mean access time, t, for this case, assum-
ing that instances of item i are equally spaced with

2Even if it were possible for a client to send a retransmit
request to the server, it is not clear that a broadcast scheme
should allow such requests, because it is possible that many
clients receive the original broadcast correctly, but only a few
do not due to some localized disturbance.

3Now, I; denotes length of item : after encoding with an error
control code.

spacing s;, is given by
M
1 1+ E(l)
= 5 1D 7
s Yen(i25) O
=1

The Square Root Rule in Theorem 1 needs to be
modified to take errors into account as follows :

Theorem 2 Given that the probability of occurrence
of uncorrectable errors in an item of length | is E(l),
the overall mean access time is minimized when

: N 172
fi x b (1+E(l’)>

l; — E(l)
and
l; 1+E(li) —1/2
sy — | ——=++
D; 1-— E(l,)
Proof : See [15] for proof. O

The lower bound on overall mean access time now
becomes,

1 (XM 1+ E(L) 2\’
topt_error = 2 (; \/IE (m) ) (8)

For the purpose of demonstration, we now consider
a simple error model. Let uncorrectable errors occur
according to a Poisson process with rate A per unit
time. Thus, E(l;) = 1 — e~ *. Substituting this ex-
pression into Equation 7, and simplifying, yields

= % Zs, p, 1) (9)

Using Theorem 2, the optimal spacing s; for an item
1 should be such that

l; . -
8; X ZTZ (26”‘—1) 12

This implies that

2 .
% (Ze“" — 1) = constant

The on-line scheduling algorithms presented pre-
viously can be trivially modified to take into ac-
count the above result. For instance, Algorithm
A can be used as such with the exception that
function F(j) needs to be re-defined as F(j) =
(@ — R()? (p3/l;) (2 —1)Y2, 1 < j < M. Sec-
tion 6 evaluates the modified algorithm A (using the
re-defined function F(j)).



5 Multiple Broadcast Channels

The discussion so far assumed that the server is
broadcasting items over a single channel and all the
clients are tuned to this channel. One can also con-
ceive an environment in which the server has a large
available bandwidth which is divided into multiple
channels, the channels being numbered 1 through c.
The clients can then subscribe to as many channels as
they want (and can afford). It is apparent that proper
use of these channels should result in better perfor-
mance. Here we give one approach to exploit these
channels to improve performance. Other approaches
are also possible [15].

The approach considered here uses a modification
of Algorithm A, described in Section 3.2, to accom-
modate multiple channels. Let the total number of
broadcast channels be ¢, the channels being numbered
1 through ¢. A client capable of listening to, say,
n broadcast channels, is assumed to be listening to
channels 1 through n.

The scheduling scheme for multiple channels works
as follows. Items to be broadcast over channel 1 are
determined using on-line algorithm A in Section 3.2,
without any modifications to the algorithm. For chan-
nel 2, items to be broadcast are also determined us-
ing algorithm A, but with a different interpretation of
R(1) for item . Let us define R;(7) as the instant when
item ¢ was last broadcast over channel j. For channel
2, R(1) is defined as the maximum of R;(%) and Ry(7),
1 <4 < M. This R(¢) is used in algorithm A to deter-
mine items to be broadcast on channel 2. Similarly,
for channel 3, we define R(%) to be maximum of R;(%),
R,(4) and R3(%), and use it in on-line algorithm A.

More formally, the algorithm for determining items
to be broadcast on a channel h is as described below.
Here, Q is the time at which an item to be broadcast
on channel h is to be determined. Function F(7) is
defined here as (Q — R(i))2 pi/l;, where R(7) is defined
appropriately for each channel h.

On-line algorithm for channel A, 1 < h <e¢:

Step 1: R(i) = mazi1<j<n{R;(7)}, 1<t< M.

Step 2: Determine maximum F(j) over all items j,
1<j< M. Let F,q; denote the maximum
value of F(j5).

Step 3: Choose item ¢ such that F (i) = Fpqz-

If this equality holds for more than one item,
choose any one of them arbitrarily.

Step 4: Broadcast item ¢ on channel h at time Q.

Step 5: Set Rp(3) = Q.

A heuristic to initialize the values of R;(¢), 1 < j <
¢, 1 <1< M, is given in the Appendix. Section 6
evaluates this algorithm.

The above algorithm can be easily modified to in-
corporate bucketing, as in algorithm B, to reduce the
time complexity. Modifying the maximum taken in
step 1 above to 1 < j < ¢ (instead of 1 < j < h)
yields an algorithm with a different behavior. We are
currently generalizing the above algorithm to optimize
the weighted access time where weights used are the
probability v; of a client listening to first ¢ channels
[16].

6 Performance Evaluation

In this section, we present simulation results for
various algorithms presented above. Each simulation
was conducted for at least 8 million item requests by
the clients. Other parameters used in the simulation
are described below.

6.1 Demand Probability Distribution

We assume that the demand for various items at the
client follows Zipf distribution (similar assumptions
are made by other researchers as well [1, 2, 3, 4, 18]).
The Zipf distribution may be expressed as follows:

1 2]
pi:C<_.>, ISZSM

2

where ¢ = 1/ Eiﬂil(l/i)e is a normalizing factor, and
0 is a parameter named access skew coefficient. Differ-
ent values of the access skew coefficient 8 yield differ-
ent Zipf distributions. For 8 = 0, the Zipf distribution
reduces to uniform distribution with p; = 1/M. How-
ever, the distribution becomes increasingly “skewed”
as 6 increases (that is, for larger 6, the range of p;
values becomes larger). Different Zipf probability dis-
tributions resulting from different 8 values are shown
in Figure 5(a).

6.2 Length Distribution

A length distribution specifies length [; of item 7 as
a function of ¢, and some other parameters. In this
paper, we consider the following length distribution.

L;-L ) .
li:round<<ﬁ>(z—l)+Lo>, 1<i<M
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Figure 5: (a) shows the Zipf Distribution for various
values of access skew coefficient §. Note that the scale
on vertical axis is logarithmic. The probability distri-
bution becomes more skewed with increasing 6. (b)
shows three length distributions used in our analysis.

where Lo and L; are parameters that characterize
the distribution. Lo and L; are both non-zero inte-
gers. round() function above returns a rounded inte-
ger value of its argument.

We consider three special cases of the above length
distribution, obtained by choosing appropriate Ly and
L, values.

e Uniform Length Distribution : In this case, Lo =
L; = 1. The distribution reduces to [; = 1, 1 <
1< M.

e Increasing Length Distribution : In this case,
Lo = 1 and L; = 10. In this case, [; is a non-
decreasing function of ¢, such that 1 < {; < 10,
1<i< M.

e Decreasing Length Distribution : In this case,
Lo = 10 and L; = 1. In this case, [; is a non-
increasing function of z, such that 1 < [; < 10,
1<i< M.

Figure 5(b) plots the three length distributions. In
addition to these length distributions, we also use
a random length distribution obtained by choosing
lengths randomly distributed from 1 to 10 with uni-
form probability.

6.3 Request Generation

For our simulations, we generated 2 requests for
items per time unit. Simulation time is divided into in-
tervals of unit length; 2 requests are generated during
each such interval. The time at which the requests are
made is uniformly distributed over the corresponding
unit length interval. The items for which the requests
are made are determined using the demand probabil-
ity distribution.

6.4 Performance Evaluation in the Ab-
sence of Uncorrectable Errors

In this section, we evaluate Algorithms A and B, as-
suming that uncorrectable transmission errors do not
occur. Performance evaluation in presence of such er-
rors is discussed in the next section.

Figures 6, 7 and 8 plot overall mean access time for
different values of access skew coefficient 8, for three
length distributions presented earlier. (The results for
uniform length distribution are similar [15, 16].) In
each of these figures, part (a) plots the simulation re-
sults and (b) plots the analytical results. In part (a),
the curve labeled “Algo A” corresponds to the access
time obtained by simulating algorithm A. The curves
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Figure 6: Overall mean access time for different values
of access skew coefficient 8 and using increasing length
distribution. In (a), curves for on-line and optimal
overlap with each other. The simulation results are
within 0.5% of analytical results.
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Figure 7: Overall mean access time for different val-
ues of access skew coefficient 6 and using decreasing
length distribution. In (a), curves for on-line and op-
timal overlap with each other The simulation results
are within 0.2% of analytical results..
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Figure 8: Overall mean access time for different values
of access skew coefficient # and using random length
distribution. In (a), curves for on-line and optimal
overlap with each other. The simulation results are
within 0.3% of analytical results.

labeled “; bucket” in part (a) correspond to the ac-
cess time obtained by simulating algorithm B using 2
buckets. In part (a) and (b) both, the curve “optimal”
corresponds to toptimal obtained using Equation 3. In

part (b) of each figure, the curve labeled “i buckets”
corresponds to topt_bucket obtained using Equation 6
using i buckets.

First observation, as noted in the caption of each
figure, is that the simulation results are very close to
the corresponding analytical results. Now note that,
when number of buckets is 1, Algorithm B reduces to
the so called “flat” cyclic scheduling [3] scheme where
each item is broadcast once in a broadcast cycle. As
the number of buckets approaches the number of items
M, performance of the bucketing algorithm should ap-
proach the performance of algorithm A. As algorithm
A has a higher time complexity that algorithm B, it is
interesting to see how performance of algorithm B im-
proves when the number of buckets is increased. Ob-
serve that, the access time with 5 buckets is much
smaller than that with just 1 bucket. However, us-
ing 5 buckets is not always adequate to achieve access
time of algorithm A. Increasing the number of buckets
further to, say, 10 further improves the performance
of algorithm B. For large 6 (i.e., large skew in prob-
ability distribution), number of buckets needs to be
larger to achieve performance close to optimal. For
instance, for § = 0.75 and 1, using 5 buckets gives
the performance much better than that with using 1
bucket. However, further improvement in performance
by doubling the number of buckets is not that signifi-
cant. But for § = 1.5, even using 10 buckets does not
bring the performance close to optimal. However, in
this case, it does improve the performance with much
bigger factor.

Thus, the choice of the number of buckets is more
critical when the skew in probability distribution is
large.

An important conclusion from above results is that,
performance of algorithm B, with a relatively small
number of buckets (10 buckets in our illustration) is
quite close to that achieved by algorithm A (effec-
tively, using M = 1000 buckets). This implies that
algorithm B can significantly reduce time complex-
ity of on-line decision making, with only a marginal
degradation in performance. Knowing the best pos-
sible access time (the optimal curve in the figures)
allows a designer to choose an appropriate number of
buckets. Secondly, as simulation results are very close
to the analytical results, analytical results can be used
as a first order approximation of actual performance.
A drawback of the related previous work on “multi-



disks” [3] is that they had no analytical method to de-
termine an appropriate number of disks. Therefore, to
choose a suitable number of “disks”, time-consuming
simulations are necessary.

6.5 Performance Evaluation in the Pres-
ence of Uncorrectable Errors

In this section, we evaluate performance of the on-
line algorithm in the presence of uncorrectable errors
as explained in section 4. Figures 9 and 10 plot overall
mean access time in the presence of errors for differ-
ent error rates (), and for increasing and decreas-
ing length distributions, respectively. Again, in each
of these figures, part (a) plots the simulation results
and part (b) plots analytical results for 6 = 0,1 and
1.5. The analytical results are obtained using Equa-
tion 8 (substituting E(l;) = 1 — e~ ). Note that the
results presented in the previous section correspond
to the case when A=0. Also note from theorem 2
that there is no need to take errors into account when
lengths of items are uniformly distributed as the factor
(1+ E(%))/(1 — E(l;)) becomes a constant and hence
theorem 2 reduces to theorem 1. Hence the schedule
generated is same irrespective of whether errors are
considered or not. This is why, we did not bother to
simulate for uniform lengths case as it was not worth
at all.

From the simulation results, observe that the pro-
posed on-line algorithm A, modified to take errors into
account, achieves performance close to optimal. Previ-
ous research on broadcasts does not take uncorrectable
errors into account when determining the broadcast
schedules, or when evaluating the access time.

6.6 Performance with Multiple Broadcast
Channels

Figure 11 shows the overall mean access time
against the number of channels for different values
of skew coefficient 8 and uniform length distribution.
The algorithm used to schedule the items on these
channels is explained in section 5. In general, as the
number of channels increases, the overall mean ac-
cess time decreases, improving the performance of the
system. However, the improvement is more signifi-
cant when there is less skew in access probability, de-
noted by smaller value of 6. Hence, for § = 0 the
improvement is most significant. Note that for 8 = 0,
pi = 1/M = constant, Vi, and since uniform length
distribution is used in this simulation, the ratio p;/l;
and hence spacing s; is also constant Vi, the resulting

With Increasing Length Distribution
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Figure 9: Overall mean access time against A for dif-
ferent values of # and increasing length distribution.
The simulation curves are obtained using Algorithm A
modified to take errors into account. The simulation
results are within 2.5 % of analytical results.
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Figure 10: Owverall mean access time against A for
different values of 8 and decreasing length distribution.
The simulation curves are obtained using Algorithm A
modified to take errors into account. The simulation
results are within 1.1 % of analytical results.
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Figure 11: Overall mean access time against number
of channels for different values of skew coeflicient 6
and uniform length distribution. For 8 = 0, uniform
probability of access, the best improvement in perfor-
mance occurs, whereas for § = 1, larger skew in access
probability, the improvement is not much significant.

broadcast is flat, giving the inverse proportional re-
lationship between overall mean access time and the
number of channels. However, for higher values of 6,
these results do not hold and hence the improvement
in overall mean access time tends to decrease.

The improvement by increasing the number of
channels also depends upon the heuristic used to ini-
tialize the R;(7) values used in on-line algorithm for
multiple channels. Here, we used the heuristic ex-
plained in section 5. The procedure of initializing
these values to optimize the overall mean access time
is an interesting problem and is one of the topics of
our on-going research.

7 Related Work

The problem of broadcasting data efficiently has re-
ceived much attention lately. The existing schemes
can be roughly divided into two categories (some
schemes may belong to both categories, we have listed
them in the most appropriate category): Schemes at-
tempting to reduce the access time [4, 3, 2, 1, 8, 12,
7, 6, 18, 19] and schemes attempting to reduce the
tuning time [10, 9, 11]. However, proposed on-line
algorithms have not been studied previously. Also,
impact of errors on scheduling, and broadcast on mul-
tiple channels, have not been addressed.

Ammar and Wong [4, 18] have performed extensive
research on broadcast scheduling and obtained many



interesting results. Our square root rule is a general-
ization of that obtained by Ammar and Wong. Wong
[18] and Imielinski and Viswanathan [8, 17] present
an on-line scheme that uses a probabilistic approach
for deciding which item to transmit. Our on-line algo-
rithm results in an improvement by a factor of 2 in the
mean access time as compared to the probabilistic on-
line algorithm in [8, 17, 18]. Chiueh [6] and Acharya
et al. [3, 2, 1] present schemes that transmit the more
frequently used items more often. However, they do
not use optimal degree of replication. Our schemes,
on the other hand, tend to use optimal frequencies.

Jain and Werth [12] note that reducing the variance
of spacing between consecutive instances of an item
reduces the mean access time. The two schemes pre-
sented in this paper do attempt to achieve a low vari-
ance. Similar to our discussion in Section 4, Jain and
Werth [12] also note that errors may occur in trans-
mission of data. Their solution to this problem is to
use error control codes (ECC) for forward error cor-
rection, and a RAID-like approach (dubbed airRAID)
that stripes the data. The server is required to trans-
mit the stripes on different frequencies, much like the
RAID approach spreads stripes of data on different
disks [5]. ECC is not always sufficient to achieve for-
ward error correction, therefore, uncorrectable errors
remains an issue (which is ignored in the past work on
data broadcast).

8 Summary

This paper considers asymmetric environments
wherein a server has a much larger communication
bandwidth available as compared to the clients. In
such an environment, an effective way for the server to
communicate information to the clients is to broadcast
the information periodically. Contributions of this pa-
per are as follows:

e We proved square-root rules (Theorems 1 and 2)
which provide a theoretical basis for the proposed
algorithms.

e We proposed on-line algorithms for scheduling
broadcasts, with the goal of minimizing the access
time. Simulation results show that our algorithms
perform quite well (very close to the theoretical
optimal). The bucketing scheme proposed in the
paper facilitates a trade-off between time com-
plexity and performance of the on-line algorithm.

e The paper considers the impact of errors on opti-
mal broadcast schedules.

e When different clients are capable of listening
on different number of broadcast channels, the
schedules on different broadcast channels should
be designed so as to minimize the access time for
all clients. This paper presents an algorithm for
scheduling broadcasts in such a system.

More work is mneeded on some problems dis-
cussed in this paper. Future work will also in-
clude design of strategies for caching and wup-
dates that attempt to achieve optimal perfor-
mance while incurring low overhead. Further
results will be made available at our web site
http://wuw.cs.tamu.edu/faculty/vaidya/
mobile.html.

Appendix: A heuristic for initializing

R;(i) values

In algorithm A, we assumed that R(¢) is initialized
to —1 for all :. With only a single broadcast chan-
nel, the initial values do not have a significant im-
pact on average access time, particularly when broad-
cast is performed for extended periods of time. With
multiple channels, the initial values assigned to R; (%)
(1 <j<e 1< i< M)play a critical role in de-
termining the access time achieved by using multiple
channels. Therefore, appropriate heuristics must be
developed to initialize R;(7) value s. We now describe
a simple heuristic to be used while evaluating perfor-
mance of the above algorithm hereunder :

We first initialize R;(¢), 1 < ¢ < M, and then rotate
the values by using a staggering factor 7 for each sub-

sequent channel, such that 7 = 1/(c ijzl i), where

p; is the access probability and s; = E;VI:1 \/Pilis/ IIJ—‘

The algorithm successively initializes the values of
Ry(%), each item one by one. Let us assume that each
item is sorted in descending order of +/p;/l; values.*
The algorithm is shown below :

Step 1: Set time=1
Step 2: For every item 1 < i < M in database

{

Step 3: For every item 1 < j < ¢

{
Step 4: if4; <0

{

4if items are not sorted then sort them and renumber the
items from 1 through M. The is just a logical renumbering and
has no influence over overall mean access time measurements
whatsoever.




Step 5: i = 8;
Step 6: time=time+l;
}
}
Step 7: Py = 8;
Step 8: Ry (i)=time
Step 9: time=time+l;
Step 10: For1 <3<

v = —;
}

Step 11: Find R;(7), 1< j<¢, ¢ <i< M, by

rotating the values of R;_1(z) by an
amount 7 = 1/(CEM B,

i=1 s;
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