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lusion algorithm that adjusts to node mo-bility is presented, along with proof of 
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tness and simulation results. Thealgorithm requires nodes to 
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urrent neighbors, mak-ing it well-suited to the ad ho
 environment. Experimental results indi
ate thatadaptation to mobility 
an improve performan
e over that of similar non-adaptivealgorithms when nodes are mobile.1. Introdu
tionA mobile ad ho
 network is a network wherein a pair of nodes 
ommuni-
ates by sending messages either over a dire
t wireless link, or over a sequen
e ofwireless links in
luding one or more intermediate nodes. Dire
t 
ommuni
ationis possible only between pairs of nodes that lie within one another's transmis-sion radius. Wireless link \failures" o

ur when previously 
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ating nodesmove su
h that they are no longer within transmission range of ea
h other. Like-wise, wireless link \formation" o

urs when nodes that were too far separated to
ommuni
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h that they are within transmission range of ea
h other.Chara
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s that distinguish ad ho
 networks from existing distributed net-works in
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2ments in whi
h to implement distributed algorithms.Past work on modifying existing distributed algorithms for ad ho
 networksin
ludes numerous routing proto
ols (e.g., [8,9,11,13,16,18,19,22{24℄), wireless
hannel allo
ation algorithms (e.g., [14℄), and proto
ols for broad
asting and mul-ti
asting (e.g., [8,12,21,26℄). Dynami
 networks are �xed wired networks thatshare some 
hara
teristi
s of ad ho
 networks, sin
e failure and repair of nodesand links is unpredi
table in both 
ases. Resear
h on dynami
 networks has fo-
used on total ordering [17℄, end-to-end 
ommuni
ation, and routing (e.g., [1,2℄).Existing distributed algorithms will run 
orre
tly on top of ad ho
 rout-ing proto
ols, sin
e these proto
ols are designed to hide the dynami
 nature ofthe network topology from higher layers in the proto
ol sta
k (see Figure 1(a)).Routing algorithms on ad ho
 networks provide the ability to send messages fromany node to any other node. However, our 
ontention is that eÆ
ien
y 
an begained by developing a 
ore set of distributed algorithms, or primitives, that areaware of the underlying mobility in the network, as shown in Figure 1(b). Inthis paper, we present a mobility aware distributed mutual ex
lusion algorithmto illustrate the layering approa
h in Figure 1(b).
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(b)(a)Figure 1. Two possible approa
hes for implementing distributed primitivesThe mutual ex
lusion problem involves a group of pro
esses, ea
h of whi
hintermittently requires a

ess to a resour
e or a pie
e of 
ode 
alled the 
riti
alse
tion (CS). At most one pro
ess may be in the CS at any given time. Providingshared a

ess to resour
es through mutual ex
lusion is a fundamental problemin 
omputer s
ien
e, and is worth 
onsidering for the ad ho
 environment, wherestripped-down mobile nodes may need to share resour
es.Distributed mutual ex
lusion algorithms that rely on the maintenan
e of alogi
al stru
ture to provide order and eÆ
ien
y (e.g., [20,25℄) may be ineÆ
ientwhen run in a mobile environment, where the topology 
an potentially 
hangewith every node movement. Badrinath et al.[3℄ solve this problem on 
ellular mo-bile networks, where the bulk of the 
omputation 
an be run on wired portionsof the network. We present a mutual ex
lusion algorithm that indu
es a logi
al



3dire
ted a
y
li
 graph (DAG) on the network, dynami
ally modifying the logi
alstru
ture to adapt to the 
hanging physi
al topology in the ad ho
 environment.We then present simulation results 
omparing the performan
e of this algorithmto a stati
 distributed mutual ex
lusion algorithm running on top of an ad ho
routing proto
ol. Simulation results indi
ate that our algorithm has better aver-age waiting time per CS entry and message 
omplexity per CS entry no greaterthan the 
ost in
urred by a stati
 mutual ex
lusion algorithm running on top ofan ad ho
 routing algorithm.The next se
tion dis
usses related work. In Se
tion 3, we des
ribe our systemassumptions and de�ne the problem in more detail. Se
tion 4 presents our mutualex
lusion algorithm. We present a proof of 
orre
tness and dis
uss the simulationresults in Se
tions 5 and 6, respe
tively. Se
tion 7 presents our 
on
lusions.2. Related WorkToken based mutual ex
lusion algorithms provide a

ess to the CS throughthe maintenan
e of a single token that 
annot simultaneously be present at morethan one node in the system. Requests for CS entry are typi
ally dire
ted towhi
hever node is the 
urrent token holder.Raymond [25℄ introdu
ed a token based mutual ex
lusion algorithm in whi
hrequests are sent, over a stati
 spanning tree of the network, toward the tokenholder; this algorithm is resilient to non-adja
ent node 
rashes and re
overies,but is not resilient to link failures. Chang et al.[7℄ extend Raymond's algorithmby imposing a logi
al dire
tion on a suÆ
ient number of links to indu
e a tokenoriented DAG in whi
h, for every node i, there exists a dire
ted path originatingat i and terminating at the token holder. Allowing request messages to be sentover all links of the DAG provides resilien
e to link and site failures. However,this algorithm does not 
onsider link re
overy, an essential feature in a system ofmobile nodes.Dhamdhere and Kulkarni [10℄ show that the algorithm of [7℄ 
an su�er fromdeadlo
k and solve this problem by assigning a dynami
ally 
hanging sequen
enumber to ea
h node, forming a total ordering of nodes in the system. The tokenholder always has the highest sequen
e number, and, by de�ning links to pointfrom a node with lower to higher sequen
e number, a token oriented DAG ismaintained. Due to link failures, a node i that wants to send a request for thetoken may �nd itself with no outgoing links to the token holder. In this situation,



4i 
oods the network with messages to build a temporary spanning tree. On
e thetoken holder be
omes part of su
h a spanning tree, the token is passed dire
tly tonode i along the tree, bypassing other requests. Sin
e priority is given to nodesthat lose a path to the token holder, it seems likely that other requesting nodes
ould be starved as long as link failures 
ontinue. Also, 
ooding in responseto link failures and storing messages for delivery after link re
overy make thisalgorithm ill-suited to the highly dynami
 ad ho
 environment.Our token based algorithm 
ombines ideas from several papers. The partialreversal te
hnique from [13℄, used to maintain a destination oriented DAG in apa
ket radio network when the destination is stati
, is used in our algorithm tomaintain a token oriented DAG with a dynami
 destination. Like the algorithmsof [25℄, [7℄, and [10℄, ea
h node in our algorithm maintains a request queue 
on-taining the identi�ers of neighboring nodes from whi
h it has re
eived requestsfor the token. Like [10℄, our algorithm totally orders nodes. The lowest node isalways the 
urrent token holder, making it a \sink" toward whi
h all requestsare sent. Our algorithm also in
ludes some new features. Ea
h node dynami
ally
hooses its lowest neighbor as its preferred link to the token holder. Nodes senselink 
hanges to immediate neighbors and reroute requests based on the status ofthe previous preferred link to the token holder and the 
urrent 
ontents of thelo
al request queue. All requests rea
hing the token holder are treated symmetri-
ally, so that requests are 
ontinually servi
ed while the DAG is being re-orientedand blo
ked requests are being rerouted.3. De�nitionsThe system 
ontains a set of n independent mobile nodes, 
ommuni
ating bymessage passing over a wireless network. Ea
h mobile node runs an appli
ationpro
ess and a mutual ex
lusion pro
ess that 
ommuni
ate with ea
h other toensure that the node 
y
les between its REMAINDER se
tion (not interested inthe CS), its WAITING se
tion (waiting for a

ess to the CS), and its CRITICALse
tion. Assumptions1 on the mobile nodes and network are:1. the nodes have unique node identi�ers,2. node failures do not o

ur,3. 
ommuni
ation links are bidire
tional and FIFO,1 See Se
tion 7 for a dis
ussion of relaxing assumption 6.



54. a link-level proto
ol ensures that ea
h node is aware of the set of nodes withwhi
h it 
an 
urrently dire
tly 
ommuni
ate by providing indi
ations of linkformations and failures,5. in
ipient link failures are dete
table, providing reliable 
ommuni
ation on aper-hop basis, and6. partitions of the network do not o

ur.The rest of this se
tion 
ontains our formal de�nitions. We expli
itly modelonly the mutual ex
lusion pro
ess at ea
h node. Constraints on the behavior ofthe appli
ation pro
esses and the network appear as 
onditions on exe
utions.The system ar
hite
ture is shown in Figure 2.We assume the node identi�ers are 0; 1; : : : ; n� 1. Ea
h node has a (mutualex
lusion) pro
ess, modeled as a state ma
hine, with the usual set of states, someof whi
h are initial states, and a transition fun
tion. Ea
h state 
ontains a lo
alvariable that holds the node identi�er and a lo
al variable that holds the 
urrentneighbors of the node. The transition fun
tion is des
ribed in more detail shortly.
Application Process

Mutual Exclusion Process

Network

node i

ReleaseCSRequestCS

Recv(m)LinkUp Send(m) LinkDown

EnterCS

Figure 2. System Ar
hite
tureA 
on�guration des
ribes the instantaneous state of the whole system; for-mally, it is a set of n states, one for ea
h pro
ess. In an initial 
on�guration, ea
hstate is an initial state and the neighbor variables des
ribe a 
onne
ted undire
tedgraph.A step of the pro
ess at node i is triggered by the o

urren
e of an inputevent. Input events are:



6� RequestCSi: the appli
ation pro
ess on node i requests a

ess to the CS,entering its WAITING se
tion.� ReleaseCSi: the appli
ation pro
ess on node i releases its a

ess to the CS,entering its REMAINDER se
tion.� Re
vi(j;m): node i re
eives message m from node j.� LinkUpi(l): node i re
eives noti�
ation that the link l in
ident on i is now up.� LinkDowni(l): node i re
eives noti�
ation that the link l in
ident on i is nowdown.The e�e
t of a step is to apply the pro
ess' transition fun
tion, taking as inputthe 
urrent state of the pro
ess and the input event, and produ
ing as output a(possibly empty) set of output events and a new state for the pro
ess. Outputevents are:� EnterCSi: the mutual ex
lusion pro
ess on node i informs its appli
ationpro
ess that it 
an enter the CRITICAL se
tion.� Sendi(j;m): node i sends message m to node j.The only 
onstraint on the state produ
ed by the transition fun
tion is that theneighbor set variable of i must be properly updated in response to a LinkUp orLinkDown event.RequestCSi, EnterCSi, and ReleaseCSi are 
alled appli
ation events, whileSendi, Re
vi, LinkUpi, and LinkDowni are 
alled network events.An exe
ution is a sequen
e of the form C0; in1; out1; C1; in2; out2; C2; : : :,where the Ck's are 
on�gurations, the ink's are input events, and the outk's aresets of output events. An exe
ution must end in a 
on�guration if it is �nite. Apositive real number is asso
iated with ea
h ini, representing the time at whi
hthat event o

urs. An exe
ution must satisfy a number of additional 
onditions,whi
h we now list. The �rst set of 
onditions are basi
 \synta
ti
" ones.� C0 is an initial 
on�guration.� If ink o

urs at node i, then outk and i's state in Ck are 
orre
t a

ording toi's transition fun
tion operating on ink and i's state in Ck�1.� The times assigned to the steps must be nonde
reasing. If the exe
ution isin�nite, then the times must in
rease without bound. At most one step byea
h pro
ess 
an o

ur at a given time.



7The next set of 
onditions require the appli
ation pro
ess to intera
t properlywith the mutual ex
lusion pro
ess and to give up the CS in �nite time.� If ink is RequestCSi, then the previous appli
ation event at node i (if any) isReleaseCSi.� If ink is ReleaseCSi, then the previous appli
ation event at node i must beEnterCSi.� If outk is EnterCSi, then there is a following ReleaseCSi.The remaining 
onditions 
onstrain the behavior of the network to mat
h theinformal des
ription given above. First, we 
onsider the mobility noti�
ation.� LinkUpi(l) o

urs at time t if and only if LinkUpj(l) o

urs at time t, wherel joins i and j. Furthermore, LinkUpi(l) only o

urs if j is 
urrently not aneighbor of i (a

ording to i's neighbor variable). The analogous 
onditionholds for LinkDown.� A LinkDown never dis
onne
ts the graph.Finally, we 
onsider message delivery. There must exist a one-to-one andonto 
orresponden
e between the o

urren
es of Sendj(i;m) and Re
vi(j;m), forall i, j and m. This requirement implies that every message sent is re
eived andthe network does not dupli
ate or 
orrupt messages nor deliver spurious messages.Furthermore, the 
orresponden
e must satisfy the following:� If Sendi(j;m) o

urs at some time t, then the 
orresponding Re
vj(i;m) o

ursat some later time t0, and the link 
onne
ting i and j is 
ontinuously up betweent and t0. This implies that a LinkDown event for link l 
annot o

ur if anymessages are in transit on l.Now we 
an state the problem formally. In every exe
ution, the followingmust hold:� If outk is EnterCSi, then the previous appli
ation event at node i must beRequestCSi. I.e., CS a

ess is only given to requesting nodes.� Mutual Ex
lusion: If outk is EnterCSi, then any previous EnterCSj event mustbe followed by a ReleaseCSj prior to outk.� No Starvation: If there are only a �nite number of LinkUpi and LinkDownievents, then if ink is RequestCSi, then there is a following EnterCSi.For the last 
ondition, the hypothesis that link 
hanges 
ease is needed be
ausean adversarial pattern of link 
hanges 
an 
ause starvation.



84. Reverse Link (RL) Mutual Ex
lusion AlgorithmIn this se
tion we �rst present the data stru
tures maintained at ea
h node inthe system, followed by an overview of the algorithm, the algorithm pseudo
ode,and examples of algorithm operation. Throughout this se
tion, data stru
turesare des
ribed for node i, 0 � i � n� 1. Subs
ripts on data stru
tures to indi
atethe node are only in
luded when needed.4.1. Data Stru
tures� status: Indi
ates whether node is in the WAITING, CRITICAL, or REMAIN-DER se
tion. Initially, status = REMAINDER.� N : The set of all nodes in dire
t wireless 
onta
t with node i. Initially, N
ontains all of node i's neighbors.� myHeight: A three-tuple (h1,h2,i) representing the height of node i. Links are
onsidered to be dire
ted from nodes with higher height toward nodes withlower height, based on lexi
ographi
 ordering. E.g., if myHeight1 = (2, 3, 1)and myHeight2 = (2, 2, 2), then myHeight1 > myHeight2 and the link betweenthese nodes would be dire
ted from node 1 to node 2. Initially at node 0,myHeight0 = (0, 0, 0) and, for all i 6= 0, myHeighti is initialized so that thedire
ted links form a DAG in whi
h every node has a dire
ted path to node 0.� height[j℄: An array of tuples representing node i's view of myHeightj for allj 2 Ni. Initially, height[j℄ = myHeightj , for all j 2 Ni. In node i's viewpoint,if j 2 N , then the link between i and j is in
oming to node i if height[j℄ >myHeight, and outgoing from node i if height[j℄ < myHeight.� tokenHolder: Flag set to true if node holds token and set to false otherwise.Initially, tokenHolder = true if i = 0, and tokenHolder = false otherwise.� next: When node i holds the token, next = i, otherwise next is the node on anoutgoing link. Initially, next = 0 if i = 0, and next is an outgoing neighborotherwise.� Q: Queue 
ontaining identi�ers of requesting neighbors. Operations on Q in-
lude Enqueue(), whi
h enqueues an item only if it is not already on Q, De-queue() with the usual FIFO semanti
s, and Delete(), whi
h removes a spe
i�editem from Q, regardless of its lo
ation. Initially, Q = ;.� re
eivedLI[j℄: Boolean array indi
ating whether LinkInfo message has been re-
eived from node j, to whi
h a Token message was re
ently sent. Any height



9information re
eived at node i from a node j for whi
h re
eivedLI[j℄ is false willnot be re
orded in height[j℄. Initially, re
eivedLIi[j℄ = true for all j 2 Ni.� forming[j℄: Boolean array set to true when link to node j has been dete
tedas forming and reset to false when �rst LinkInfo message arrives from node j.Initially, formingi[j℄ = false for all j 2 Ni.� formHeight[j℄: An array of tuples storing value of myHeight when new link toj �rst dete
ted. Initially, formHeighti[j℄ = myHeighti for all j 2 Ni.4.2. Overview of the RL AlgorithmThe mutual ex
lusion algorithm is event-driven. An event at a node i 
on-sists of re
eiving a message from another node j 6= i, or an indi
ation of linkfailure or formation from the link layer, or an input from the appli
ation on nodei to request or release the CS. Ea
h message sent in
ludes the 
urrent value of my-Height at the sender. Modules are assumed to be exe
uted atomi
ally. First, wedes
ribe the pseudo
ode triggered by events and then we des
ribe the pseudo
odefor pro
edures.Requesting and releasing the CS: When node i requests a

ess to the CS, itenqueues its own identi�er on Q and sets status to WAITING. If node i doesnot 
urrently hold the token and i has a single element on its queue, it 
allsForwardRequest() to send a Request message. If node i does hold the token, i
an set status to CRITICAL and enter the CS, sin
e it will be at the head ofQ. When node i releases the CS, it 
alls GiveTokenToNext() to send a Tokenmessage if Q is non-empty, and sets status to REMAINDER.Request messages: When a Request message sent by a neighboring node j isre
eived at node i, i ignores the Request if re
eivedLI[j℄ is false. Otherwise, i
hanges height[j℄, and enqueues j on Q if the link between i and j is in
omingat i. If Q is non-empty, and status = REMAINDER, i 
alls GiveTokenToNext(),provided i holds the token. Non-token holding node i 
alls RaiseHeight() if thelink to j is now in
oming and i has no outgoing links or i 
alls ForwardRequest()if Q = [j℄ or if Q is non-empty and the link to next has reversed.Token messages: When node i re
eives a Token message from some neighbor j,i sets tokenHolder = true. Then i lowers its height to be lower than that of thelast token holder, node j, informs all its outgoing neighbors of its new height by



10sending LinkInfo messages, and 
alls GiveTokenToNext(). Node i also informs jof its new height so that j will know that i re
eived the token.LinkInfo messages: If re
eivedLI[j℄ is true when a LinkInfo message is re
eivedat node i from node j, j's height is saved in height[j℄. If re
eivedLI[j℄ is false,i 
he
ks if the height of j in the message is what it was when i sent the Tokenmessage to j. If so, i sets re
eivedLI[j℄ to true. If forming[j℄ is true, the 
urrentvalue of myHeight is 
ompared to the value of myHeight when the link to j was�rst dete
ted, formHeight[j℄. If myHeight and formHeight[j℄ are di�erent, then aLinkInfo message is sent to j. Identi�er j is added to N and forming[j℄ is set tofalse. If j is an element of Q and j is an outgoing link, then j is deleted from Q. Ifnode i has no outgoing links and is not the token holder, i 
alls RaiseHeight() sothat an outgoing link will be formed. Otherwise, if Q is non-empty, and the linkto next has reversed, i 
alls ForwardRequest() sin
e it must send another Requestfor the token.Link failures: When node i senses the failure of a link to a neighboring node j, itremoves j from N , sets re
eivedLI[j℄ to true, and, if j is an element of Q, deletesj from Q. Then, if i is not the token holder and i has no outgoing links, i 
allsRaiseHeight(). If node i is not the token holder, Q is non-empty, and the link tonext has failed, i 
alls ForwardRequest() sin
e it must send another Request forthe token.Link formation: When node i dete
ts a new link to node j, i sends a LinkInfomessage to j with myHeight, sets forming[j℄ to true, and sets formHeight[j℄ =myHeight.Pro
edure ForwardRequest: Sele
ts node i's lowest height neighbor to be next.Sends a Request message to next.Pro
edure GiveTokenToNext: Node i dequeues the �rst node on Q and sets nextequal to this value. If next = i, i enters the CS. If next 6= i, i lowers height[next℄ to(myHeight.h1, myHeight.h2�1; next), so any in
oming Request messages will besent to next, sets tokenHolder = false, sets re
eivedLI[next℄ to false, and then sendsa Token message to next. If Q is non-empty after sending a Token message tonext, a Request message is sent to next immediately following the Token messageso the token will eventually be returned to i.



11Pro
edure RaiseHeight: Called at non-token holding node i when i loses its lastoutgoing link. Node i raises its height (in lines 1-3) using the partial reversalmethod of [13℄ and informs all its neighbors of its height 
hange with LinkInfomessages. All nodes on Q to whi
h links are now outgoing are deleted from Q. IfQ is not empty at this point, ForwardRequest() is 
alled sin
e i must send anotherRequest for the token.4.3. The RL AlgorithmWhen node i requests a

ess to the CS:1. status := WAITING2. Enqueue(Q; i)3. If (not tokenHolder) then4. If (jQj = 1) then ForwardRequest()5. Else GiveTokenToNext()When node i releases the CS:1. If (jQj > 0) then GiveTokenToNext()2. status := REMAINDERWhen Request(h) re
eived at node i from node j:// h denotes j's height when message was sent1. If (re
eivedLI[j℄) then2. height[j℄ := h // set i's view of j's height3. If (myHeight < height[j℄) then Enqueue(Q; j)4. If (tokenHolder) then5. If ((status = REMAINDER) and (jQj > 0)) then GiveTokenToNext()6. Else // not tokenHolder7. If (myHeight < height[k℄, 8 k 2 N) then RaiseHeight()8. Else if ((Q = [j℄) or ((jQj > 0) and (myHeight < height[next℄))) then9. ForwardRequest() // reroute requestWhen Token(h) re
eived at node i from node j:// h denotes j's height when message was sent1. tokenHolder := true2. height[j℄ := h3. Send LinkInfo(h.h1, h.h2 �1; i) to all outgoing k 2 N and to j4. myHeight.h1 := h.h15. myHeight.h2 := h.h2 - 1 // lower my height6. If (jQj > 0) then GiveTokenToNext() Else next := i



12When LinkInfo(h) re
eived at node i from node j:// h denotes j's height when message was sent1. N := N [ fjg2. If ((forming[j℄) and (myHeight 6= formHeight[j℄)) then3. Send LinkInfo(myHeight) to j4. forming[j℄ := false5. If (re
eivedLI[j℄) then height[j℄ := h6. Else if (height[j℄ = h) then re
eivedLI[j℄ := true7. If (myHeight > height[j℄) then Delete(Q; j)8. If ((myHeight < height[k℄, 8k 2 N) and (not tokenHolder)) then RaiseHeight()// reroute request9. Else if ((jQj > 0) and (myHeight < height[next℄)) then ForwardRequest()When failure of link to j dete
ted at node i:1. N := N � fjg2. Delete(Q; j)3. re
eivedLI[j℄ := true4. If (not tokenHolder) then5. If (myHeight < height[k℄, 8k 2 N) then RaiseHeight()// reroute request6. Else if ((jQj > 0) and (next 62 N)) then ForwardRequest()When formation of link to j dete
ted at node i:1. Send LinkInfo(myHeight) to j2. forming[j℄ := true3. formHeight[j℄ := myHeightPro
edure ForwardRequest():1. next := l 2 N : height[l℄ � height[j℄, 8 j 2 N2. Send Request(myHeight) to nextPro
edure GiveTokenToNext(): // only 
alled when jQj > 01. next := Dequeue(Q)2. If (next 6= i) then3. tokenHolder := false4. height[next℄ := (myHeight.h1, myHeight.h2�1, next)5. re
eivedLI[next℄ := false6. Send Token(myHeight) to next7. If (jQj > 0) then Send Request(myHeight) to next8. Else // next = i9. status := CRITICAL



1310. Enter CSPro
edure RaiseHeight():1. myHeight.h1 := 1 + mink2Nfheight[k℄.h1g2. S := fl 2 N : height[l℄.h1 = myHeight.h1g3. If (S 6= ;) then myHeight.h2 := minl2Sfheight[l℄.h2g � 14. Send LinkInfo(myHeight) to all k 2 N// Raising own height 
an 
ause some links to be
ome outgoing5. For (all k 2 N su
h that myHeight > height[k℄) do Delete(Q; k)// Must reroute request if queue non-empty, sin
e just had no outgoing links6. If (jQj > 0) then ForwardRequest()4.4. Examples of Algorithm OperationWe �rst dis
uss the 
ase of a stati
 network, followed by a dynami
 network.An illustration of the algorithm on a stati
 network (in whi
h links do not failor form) is depi
ted in Figure 3. Snapshots of the system 
on�guration duringalgorithm exe
ution are shown, with time in
reasing from 3(a) to 3(e). The dire
twireless links are shown as dashed lines 
onne
ting 
ir
ular nodes. The arrow onea
h wireless link points from the higher height node to the lower height node.The request queue at ea
h node is depi
ted as a re
tangle, the height is shown asa 3-tuple, and the token holder as a shaded 
ir
le. The next pointers are shown assolid arrows. Note that when a node holds the token, its next pointer is dire
tedtowards itself.In Figure 3(a), nodes 2 and 3 have requested a

ess to the CS (note thatnodes 2 and 3 have enqueued themselves on Q2 and Q3) and have sent Requestmessages to node 0, whi
h enqueued them on Q0 in the order in whi
h the Requestmessages were re
eived. Part (b) depi
ts the system at a later time, where node1 has requested a

ess to the CS, and has sent a Request message to node 3 (notethat 1 is enqueued on Q1 and Q3). Figure 3(
) shows the system 
on�gurationafter node 0 has released the CS and has sent a Token message to node 3, followedby a Request sent by node 0 on behalf of node 2. Observe that the logi
al dire
tionof the link between node 0 and node 3 
hanges from being dire
ted away fromnode 3 in part (b), to being dire
ted toward node 3 in part (
), when node 3re
eives the Token message and lowers its height. Noti
e also the next pointersof nodes 0 and 3 
hange from both nodes having next pointers dire
ted towardnode 0 in part (b) to both nodes having next pointers dire
ted toward node 3
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(e)Figure 3. Operation of Reverse Link Mutual Ex
lusion Algorithm on Stati
 Networkin part (
). Part (d) shows the system 
on�guration after node 3 sent a Tokenmessage to node 1, followed by a Request message. The Request message wassent be
ause node 3 re
eived the Request message from node 0. Noti
e that theitems at the head of the nodes' request queues in part (d) form a path from thetoken holder, node 1, to the sole remaining requester, node 2. Part (e) depi
tsthe system 
on�guration after Token messages have been passed from node 1 to3, node 3 to 0, and from node 0 to 2. Observe that the middle element, h2, ofea
h node's myHeight tuple de
reases by 1 for every hop the token travels, sothat the token holder is always the lowest height node in the system.We now 
onsider the exe
ution of the RL algorithm on a dynami
 network.The height information allows ea
h node i to keep tra
k of the 
urrent logi
aldire
tion of links to neighboring nodes, parti
ularly to the node 
hosen to benext. If the link to next 
hanges and jQj > 0, node i must reroute its request by
alling ForwardRequest().Figure 4(a) shows the same snapshot of the system exe
ution as is shownin Figure 3(a), with time in
reasing from 4(a) to 4(e). Figure 4(b) depi
ts thesystem 
on�guration after node 3 has moved in relation to the other nodes inthe system, resulting in a network that is temporarily not token oriented, sin
enode 3 has no outgoing links. Node 0 has adapted to the lost link to node 3 byremoving 3 from its request queue. Node 2 takes no a
tion as a result of theloss of its link to node 3, sin
e the link to next2 was not a�e
ted and node 2 stillhas one outgoing link. In part (
), node 3 has adapted to the loss of its link to
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(d) (e)Figure 4. Operation of Reverse Link Mutual Ex
lusion Algorithm on Dynami
 Networknode 0 by raising its height and has sent a Request message to node 1 (that hasnot yet arrived at node 1). Part (d) shows the system 
on�guration after node1 has re
eived the Request message from node 3, has enqueued 3 on Q1, and hasraised its height due to the loss of its last outgoing link. In part (e), node 1 haspropagated the Request re
eived from node 3 by sending a Request to node 2,also informing node 2 of the 
hange in its height. Node 2 subsequently enqueued1 on Q2, but did not raise its own height or send a Request, be
ause node 2 hasan inta
t link to next2, node 0, to whi
h it already sent an unful�lled request.5. Corre
tness of Reverse Link AlgorithmThe following theorem holds be
ause there is only one token in the systemat any time.Theorem 1. The algorithm ensures mutual ex
lusion.To prove no starvation, we �rst show that, after link 
hanges 
ease, even-tually the system rea
hes a \good" 
on�guration, and then we apply a variantfun
tion argument.We will show that after link 
hanges 
ease, the logi
al dire
tions on the linksimparted by height values will eventually form a \token oriented" DAG. Sin
ethe height values of the nodes are totally ordered, there 
annot be any 
y
les in



16the logi
al graph, and thus it is a DAG. The hard part is showing that this DAGis token oriented, de�ned next.De�nition 1. A node i is the token holder in a 
on�guration if tokenHolderi =true or if a Token message is in transit from node i to nexti.De�nition 2. The DAG is token oriented in a 
on�guration if for every nodei; i 2 f0; : : : ; n� 1g, there exists a dire
ted path originating at node i and termi-nating at the token holder.To prove Lemma 3, that the DAG is eventually token oriented, we �rstshow, in Lemma 1, that this 
ondition is equivalent to the absen
e of \sink"nodes [13℄, as de�ned below. We then show, in Lemma 2, that eventually thereare no more 
alls to RaiseHeight(). Throughout, we assume that eventually link
hanges 
ease.De�nition 3. A node i is a sink in a 
on�guration if(tokenHolderi = false) and ((myHeighti < heighti[j℄), for all j 2 Ni).Lemma 1. In every 
on�guration of every exe
ution, the DAG is token orientedif and only if there are no sinks.Proof: The only-if dire
tion follows from the de�nition of a token oriented DAG.The if dire
tion is proved by 
ontradi
tion. Assume, in 
ontradi
tion, that thereexists a node i in a 
on�guration su
h that tokenHolderi = false and for whi
hthere is no dire
ted path starting at i and ending at the token holder. Sin
e thereare no sinks, i must have at least one outgoing link that is in
oming at some othernode. Sin
e the number of nodes is �nite, the network is 
onne
ted, and all linksare logi
ally dire
ted su
h that no logi
al path 
an form a 
y
le, there must exista dire
ted path from i to the token holder, a 
ontradi
tion.To show that eventually there are no sinks (Lemma 3), we show that thereare only a �nite number of 
alls to RaiseHeight().Lemma 2. In every exe
ution with a �nite number of link 
hanges, there existsa �nite number of 
alls to RaiseHeight().



17Proof: In 
ontradi
tion, 
onsider an exe
ution with a �nite number of link
hanges but an in�nite number of 
alls to RaiseHeight(). Then, after link 
hanges
ease, some node 
allsRaiseHeight() in�nitely often. We �rst note that if one node
alls RaiseHeight() in�nitely often, then every node 
alls RaiseHeight() in�nitelyoften. To see this, 
onsider that a node i would 
all RaiseHeight() in�nitelyoften only if it lost all its outgoing links in�nitely often. But this would happenin�nitely often at node i only if a neighboring node j raised its height in�nitelyoften, and neighboring node j would only 
all RaiseHeight() in�nitely often if itsneighbor k raised its height in�nitely often, and so on. However, Claim 1 showsthat at least one node 
alls RaiseHeight() only a �nite number of times.Claim 1. No node that holds the token after the last link 
hange ever 
allsRaiseHeight() subsequently.Proof: Suppose the 
laim is false, and some node that holds the token afterthe last link 
hange 
alls RaiseHeight() subsequently. Let i be the �rst node todo so. By the 
ode, node i does not hold the token when it 
alls RaiseHeight().Suppose that node i sends the token to neighboring node j at time t1, setting itsview of j to be outgoing, and at a later time, t3, node i 
alls RaiseHeight(). Thereason i 
alls RaiseHeight() at time t3 is that it lost its last outgoing link. Thus,at time t2 between time t1 and t3, the link between i and j has reversed dire
tionin i's view from outgoing to in
oming. By the 
ode, the dire
tion 
hange at nodei must be due to the re
eipt of a LinkInfo or Request message from node j. Wedis
uss these 
ases separately below.Case 1: The dire
tion 
hange at node i is due to the re
eipt of a LinkInfo messagefrom node j at time t2. By the 
ode, when i sends the token to j at t1, it setsre
eivedLI[j℄ to false. Therefore, when the LinkInfo message is re
eived at i fromj at time t2, node i must have already reset re
eivedLI[j℄ to true or i would stillsee the link to j as outgoing and would not 
all RaiseHeight() at time t2. Sin
ei 
alled RaiseHeight() after re
eiving the LinkInfo message from j at time t2, imust have re
eived the LinkInfo message node j sent when it re
eived the tokenfrom i before time t2, by the FIFO assumption on message delivery. Then nodej must have re
eived the token and sent it to another node, k 6= i, after whi
h jraised its height and sent the LinkInfo message that node i re
eived at time t2.However, this violates our assumption that i is the �rst node to 
all RaiseHeight()after the last link 
hange, a 
ontradi
tion.



18Case 2: The dire
tion 
hange at node i is due to the re
eipt of a Request messagefrom node j at time t2. By a similar argument to 
ase 1, any Request re
eivedfrom node j would be ignored at node i as long as re
eivedLI[j℄ is false. Butthis means that node j must have 
alled RaiseHeight() after it re
eived the tokenfrom node i and subsequently sent the Request re
eived by i at time t2. Again,this violates the assumption that i is the �rst node to 
all RaiseHeight() after thelast link 
hange, a 
ontradi
tion.Therefore, node i will not 
all RaiseHeight() at time t2 and the 
laim is true.Therefore, by Claim 1, there is only a �nite number of 
alls to RaiseHeight()in any exe
ution with a �nite number of link 
hanges.Lemma 3 follows from Lemma 2, sin
e if a node be
omes a sink, it willeventually be informed via LinkInfo messages and will then 
all RaiseHeight().Lemma 3. On
e link 
hanges 
ease, the logi
al dire
tion on links imparted byheight values will eventually always form a token oriented DAG.Consider a node that is WAITING in an exe
ution at some point after link
hanges and 
alls to RaiseHeight() have 
eased. We �rst de�ne the \request
hain" of a node to be the path along whi
h its request has propagated. Then wemodify the variant fun
tion argument in [25℄ to show that the node eventuallygets to enter the CS.De�nition 4. Given a 
on�guration, a request 
hain for any node l with anon-empty request queue is the maximal length list of node identi�ers p1 =l; p2; : : : ; pj, where for ea
h i, 1 < i � j,� pi's queue is not empty,� pi = nextpi�1 ,� the link between pi�1 and pi is outgoing at pi�1 and in
oming at pi,� no Request message is in transit from pi�1 to pi, and� no Token message is in transit from pi to pi�1.Lemma 4 gives useful information about what is going on at the end of arequest 
hain:



19Lemma 4. The following is true in every 
on�guration: Let l be a node with anon-empty request queue and let p1 = l; p2; : : : ; pj be l's request 
hain. Then(a) l is in Ql i� l is WAITING,(b) pi�1 is in Qpi ; 1 < i � j, and(
) either pj is the token holder,or a Token message is in transit to pj,or a Request message is in transit from pj to nextpj ,or a LinkInfo message is in transit from nextpj to pj with nextpj higher thanpj ,or nextpj sees the link to pj as failed.Proof: By indu
tion on the exe
ution.Property (a) 
an easily be shown to hold, sin
e a node enqueues its ownidenti�er when its appli
ation requests a

ess to the CS, at whi
h point it 
hangesits status to WAITING. By the 
ode, at no point will a node dequeue its ownidenti�er until just before it enters the CS and sets its status to CRITICAL.Properties (b) and (
) are va
uously true in the initial 
on�guration, sin
eno node has a non-empty queue.Suppose (b) and (
) are true in the (t � 1)st 
on�guration, Ct�1, of theexe
ution. It is possible to show these properties are true in the tth 
on�guration,Ct, by 
onsidering in turn every possibility for the tth event. Most of the eventsapplied to Ct�1 are easily shown to yield a 
on�guration Ct in whi
h properties(b) and (
) are true. Here we dis
uss the events for whi
h the out
ome is less
lear by presenting the problemati
 
ases that 
an appear to disrupt a request
hain. We note that, in the following 
ases, non-token holding nodes are oftenrequired to �nd an outgoing link due to link reversals or failures. It is not hardto show that a node i that is not the token holder 
an always �nd an outgoinglink due to the performan
e of RaiseHeight().Case 1: Node i re
eives a Request(h) from node j and does not enqueue j onits request queue. To ensure that j's Request is not overlooked, 
ausing possiblestarvation, we show that either a LinkInfo or a Token message is sent to j fromi if a Request from j is re
eived at i and j is not enqueued.Case 1.1: re
eivedLI[j℄ is false at i. It must be that i sent the token to j in someprevious 
on�guration and i has not yet re
eived the LinkInfo message that j



20 must send to i upon re
eipt of the token. If the token is not in transit from ito j or held by j in Ct�1, then earlier j had the token and passed it on. TheRequest re
eived by i was sent before the LinkInfo message that j must sendto i upon re
eipt of the token. So if j is WAITING in Ct�1, it has alreadysent a newer Request and properties (b) and (
) hold for this request 
hain inCt by the indu
tive hypothesis.Case 1.2: re
eivedLI[j℄ is true at i. Then if j is not enqueued on i's requestqueue, it must be that myHeighti > h. Sin
e j viewed i as outgoing whenit sent the Request, node i must have either 
alled RaiseHeight() after j wasin Ni or the relative heights of i and j 
hanged between the time link (i; j)was �rst dete
ted and before j was added to Ni. In either 
ase, node j musteventually re
eive a Linkinfo message from i and see that its link to nextj hasreversed, in whi
h 
ase j will take a
tion resulting in the eventual sending ofanother Request.Case 2: Node i re
eives an input 
ausing it to delete identi�er j from its requestqueue. To ensure that j's Request is not forgotten when i 
alls Delete(Q; j), weshow that either node j re
eived a Token message prior to the deletion, in whi
h
ase j's Request is satis�ed, or node j is noti�ed that the link to i failed, in whi
h
ase j will take the appropriate a
tion to reroute the request 
hain.Case 2.1: Node i 
alls Delete(Q; j) be
ause it re
eives a LinkInfo message from jindi
ating that i's link to j has be
ome outgoing at i. Then, sin
e i enqueuedj, it must be that in some earlier 
on�guration i saw the link to j as in
oming.Sin
e the re
eipt of the LinkInfo message from j 
aused the link to 
hangefrom in
oming to outgoing in i's view, it must be that the LinkInfo was sentby j when j re
eived the token and lowered its height. If the token is not heldby j in Ct�1, then earlier j had the token and passed it on. If j is WAITINGin Ct�1, it has already sent a newer Request and properties (b) and (
) holdfor this request 
hain in Ct by the indu
tive hypothesis.Case 2.2: Node i 
alls Delete(Q; j) be
ause it re
eived an indi
ation that link(i; j) failed. Then j must re
eive the same indi
ation, in whi
h 
ase it 
antake appropriate a
tion to advan
e any request 
hains.Case 3: Node i re
eives an input whi
h makes it see the link to nexti as in
omingor failed. In this 
ase, any request 
hains in
luding node i in Ct�1 end at i in Ct.We show that node i takes the 
orre
t a
tion to propagate these request 
hains



21by sending either a new Request or a LinkInfo message.Case 3.1: Node i re
eives a LinkInfo message from neighbor j = nexti indi
atingthat i's link to j has be
ome in
oming at i. If the link to j was i's last outgoinglink, then in Ct i will 
all RaiseHeight(). Node i will delete the identi�ersof any nodes on outgoing links from its request queue. Node i will send aLinkInfo message to ea
h neighbor, in
luding nodes whose identi�ers wereremoved from i's request queue. If i's request queue is non-empty it will 
allForwardRequest() and send a Request message to the node 
hosen as nexti inCt.Case 3.2: Node i re
eives an indi
ation that the link to nexti has failed. In Ct, iwill take the same a
tions as it did in 
ase 3.1, when its link to nexti reversed.Therefore, no a
tion taken by node i 
an make properties (b) and (
) falseand the lemma holds.Lemma 5. On
e link 
hanges and 
alls to RaiseHeight() 
ease, for every 
on�g-uration in whi
h a node l's request 
hain does not in
lude the token holder, thenthere is a later 
on�guration in whi
h l's request 
hain does in
lude the tokenholder.Proof: By Lemma 3, after link 
hanges 
ease, eventually a token orientedDAG will be formed. Consider a 
on�guration after link 
hanges and 
alls toRaiseHeight() 
ease in whi
h the DAG is token oriented, meaning that all LinkInfomessages generated when nodes raise their heights have been delivered.The proof is by 
ontradi
tion. Assume node l's request 
hain never in
ludesthe token holder. So the token 
an only be held by or be in transit to nodes thatare not in l's request 
hain. By our assumption on the exe
ution, no LinkInfomessages 
aused by a 
all to RaiseHeight() will be in transit to a node in l's request
hain, nor will any node in l's request 
hain dete
t a failed link to a neighboringnode. Therefore, by Lemma 4(
), a Request message must be in transit froma node in l's request 
hain to a node that is not in l's request 
hain, and thenumber of nodes in l's request 
hain will in
rease when the Request message isre
eived. At this point, l's request 
hain will either in
lude the token holder,another Request message will be in transit from a node in l's request 
hain toa node that is not in l's request 
hain, or l's request 
hain will have joined therequest 
hain of some other node. While the number of nodes in l's request 
hain



22in
reases, the number of nodes not in l's request 
hain de
reases, sin
e there area �nite number of nodes in the system. So eventually l's request 
hain in
ludesall nodes. Therefore, if the token is not eventually 
ontained in l's request 
hain,it is not in the system, a 
ontradi
tion.Let l be a node that is WAITING after link 
hanges and 
alls to Raise-Height() 
ease. Given a 
on�guration s in the exe
ution, a fun
tion Vl for l isde�ned to be the following ve
tor of positive integers. Let p1 = l; p2; : : : ; pm bel's request 
hain. Vl(s) has either m + 1 or m elements hv1; v2; : : :i, dependingon whether a Request message is in transit from pm or not. In either 
ase, v1 isthe position of p1(= l) in Ql, and for 1 < j � m, vj is the position of pj�1 inQpj . (Positions are numbered in as
ending order with 1 being the head of thequeue.) If a Request message is in transit, then Vl(s) has m + 1 elements andvm+1 = n+1; otherwise, Vl(s) has only m elements. These ve
tors are 
omparedlexi
ographi
ally.Lemma 6. Vl is a variant fun
tion.Proof: The key points to prove are:(1) Vl never has more than n entries and every entry is between 1 and n+ 1, sothe range of Vl is well-founded.(2) Most events 
an be easily seen not to in
rease Vl. Here we dis
uss the re-maining events.When the Requestmessage at the end of l's request 
hain is re
eived by nodej from node pm, l's request 
hain in
reases in length to m + 1, Vl de
reasesfrom hv1; : : : ; vm; n + 1i to hv1; : : : ; vm; v0m+1; : : :i, where v0m+1 < n + 1 sin
ev0m+1 is pm's position in Qj after the Request message is re
eived.When a Token message is re
eived by the node pm at the end of l's request
hain, it is either- kept at pm, so Vl de
reases from hv1; : : : ; vm�1; vmi to hv1; : : : ; vm�1; vm�1i,- or sent toward l, so Vl de
reases from hv1; : : : ; vm�1; vmi to hv1; : : : ; vm�1i,- or sent away from l, followed by a Request message, so Vl de
reases fromhv1; : : : ; vm�1; vmi to hv1; : : : ; vm�1; vm � 1; n+ 1i.(3) To see that the events that 
ause Vl to de
rease will 
ontinue to o

ur, 
onsiderthe following two 
ases:



23Case 1: The token holder is not in l's request 
hain. By Lemma 5, eventuallythe token holder will be in l's request 
hain.Case 2: The token holder is in l's request 
hain. Sin
e no node stays in theCS forever, at some later time the token will be sent and re
eived,de
reasing the value of Vl, by part (2) of this proof.On
e Vl equals h1i, l enters the CS. We have:Theorem 2. If link 
hanges 
ease, then every request is eventually satis�ed.6. Simulation ResultsIn this se
tion we dis
uss the stati
 and dynami
 performan
e of the Re-verse Link (RL) algorithm 
ompared to a mutual ex
lusion algorithm designedto operate on a stati
 network. We simulated Raymond's token based mutualex
lusion algorithm [25℄ as if it were running on top of a \routing" layer thatalways provided shortest path routes between nodes. In this se
tion, we will referto this simulation as \Raymond's with routing" (RR). Raymond's algorithm wasused be
ause it is the stati
 algorithm from whi
h the RL algorithm was adaptedand be
ause it does not provide for link failures and re
overy and must rely onthe routing layer to maintain logi
al paths if run in a dynami
 network. In orderto make our results more generally appli
able, we made best-
ase assumptionsabout the underlying routing proto
ol used with Raymond's algorithm: that italways provides shortest paths and its time and message 
omplexity are zero. Ifour simulation shows that the RL algorithm is better than the RR 
ombinationin some s
enario, then the RL algorithm will also be better than Raymond'salgorithm in that s
enario when any real ad ho
 routing algorithm is used. Ifour simulation shows that the RL algorithm is worse than the RR 
ombinationin some s
enario, then it might or might not be worse in an a
tual situation,depending on how mu
h worse it is in the simulation and what are the 
osts ofthe routing algorithm.We simulated a 30 node system under various s
enarios. We 
hose to sim-ulate on a 30 node system be
ause for networks larger than 30 nodes the timeneeded for simulation was very high. Also, we envision ad ho
 networks to bemu
h smaller s
ale than wired networks like the Internet. Typi
al numbers ofnodes used for simulations of ad ho
 networks range from 10 to 50 [4{6,15,18,26℄.



24In all our experiments, ea
h CS exe
ution took one time unit and ea
h messagedelay was one time unit. Requests for the CS were modeled as a Poisson pro
esswith arrival rate �req. Thus the time delay between when a node left the CSand made its next request to enter the CS is an exponential random variablewith mean 1�req time units. Link 
hanges were modeled as a Poisson pro
ess witharrival rate �mob. Thus the time delay between ea
h 
hange to the graph is anexponential random variable with mean 1�mob time units. Ea
h 
hange to thegraph 
onsisted of the deletion of a link 
hosen at random (whose loss did notdis
onne
t the graph) and the formation of a link 
hosen at random.In ea
h exe
ution, we measured the average waiting time for CS entry, thatis, the average number of time units that nodes spent in their WAITING se
tions.We also measured the average number of messages sent per CS entry.We varied the load on the system (�req), the degree of mobility (�mob), andthe \
onne
tivity" of the graph. Conne
tivity was measured as the per
entage ofpossible links that were present in the graph. Conne
tivity values presented inthis se
tion represent initial graph 
onne
tivity. Note that a 
lique on 30 nodeshas 435 (undire
ted) links.In the graphs of our results, ea
h plotted point represents the average of sixrepetitions of the simulation. Thus in plots of average time per CS entry, ea
hpoint is the average of the averages from six exe
utions, and similarly for plotsof average number of messages per CS entry.For the RR simulations, we initially formed a random 
onne
ted graph withthe desired number of links and then used breadth-�rst sear
h to form a spanningtree of the graph to play the part of the stati
 virtual spanning tree over whi
hnodes 
ommuni
ate in Raymond's algorithm. After the spanning tree was formed,we randomly permuted the graph while maintaining the desired 
onne
tivity andthen 
al
ulated the shortest paths from all nodes to their neighbors in the virtualspanning tree. After this, we started the mutual ex
lusion algorithm and began
ounting messages and waiting time per CS entry. When link 
hanges o

urred,we did not measure the time or messages needed to re
al
ulate shortest pathroutes in the modi�ed graph. We did measure any added time and distan
e thatthe appli
ation messages traveled due to route 
hanges, 
harging one message perlink traversed.For simulations of RL, we formed a random 
onne
ted graph with the desirednumber of links, initialized the node heights and link dire
tions, and then startedthe algorithm and performan
e measurements. When link 
hanges o

urred, the



25time and messages needed to �nd new routes between nodes were in
luded in theoverall 
ost of performan
e.In this se
tion, part (a) of ea
h �gure displays results when the graph isstati
, part (b) when �mob = 10�2 (low mobility), and part (
) when �mob =10�1 (high mobility). Our 
hoi
e for the value of the low mobility parameter
orresponds to the situation where nodes remain stationary for a few tens ofse
onds after moving and prior to making another move. Our 
hoi
e for thevalue of the high mobility parameter represents a mu
h more volatile network,where nodes remain stati
 for only a few se
onds between moves.6.1. Average waiting time per CS entry
Load (Request Arrival Rate)

(a)

.001
0

20

40

60

80

100

120

140

160

180

200

.0001

Load (Request Arrival Rate)

0

20

40

60

80

100

120

140

160

180

200

.0001

(b)

X

X X

T
im

e 
U

ni
ts

/C
S 

E
nt

ry

T
im

e 
U

ni
ts

/C
S 

E
nt

ry

Load (Request Arrival Rate)

.001.0001

250

100

150

200

50

300

0

(c)

X

T
im

e 
U

ni
ts

/C
S 

E
nt

ry

.01 .1 1 .001 .01 .1 1

.01 .1 1

X

RR, 20% Connectivity
RR, 80% Connectivity

RL, 80% Connectivity
RL, 20% Connectivity

X

X

X X

X

X

X

X
X

XXFigure 5. Load vs. Time/CS entry for (a) zero, (b) low, and (
) high mobilityFigure 5 plots the average number of time units elapsed between host requestand subsequent entry to the CS against values of �req in
reasing from 10�4 (themean time units between requests is 104) to 1 (the mean time units betweenrequests is 1) from left to right along the x axis. We 
hose the high load value



26of �req be
ause at this rate ea
h node would have a request pending almost allthe time. The low load value of �req represents a mu
h less busy network, withrequests rarely pending at all nodes at the same time. Plots are shown for runswith 20% (87 links) and 80% (348 links) 
onne
tivity for both the RL and RRsimulations.Figure 5 indi
ates that RL has better performan
e than RR in terms ofaverage waiting time per CS entry, up to a fa
tor of six. The reason is thatRaymond's algorithm sends appli
ation messages over a stati
 virtual spanningtree; when a message is sent from a node to one of its neighbors in the virtualspanning tree, it may a
tually be routed over a long distan
e, thus in
reasing thetime delay. In 
ontrast, the RL algorithm uses a

urate information about thea
tual topology, resulting in less delay between ea
h request and subsequent CSentry.Both algorithms show an in
rease in average waiting time per CS entry fromlow to high load in Figure 5. The higher the load, the larger is the number ofother nodes that pre
ede a given node into the CS.The average waiting time for ea
h CS entry rea
hes its peak for the RLsimulation at around 75 time units per CS entry under the highest load. Thisis 
aused by an essentially round robin pattern of token traversal. However, theaverage waiting time for the RL simulation in Figure 5(
) at the highest loada
tually de
reases under high mobility. This phenomenon may be due to the fa
tthat, at high loads, frequent link failures break the fair pattern in whi
h the tokenis re
eived, 
ausing some nodes to get the token more frequently.Figure 5 also shows that the waiting time advantage of RL over RR in
reaseswith in
reasing load and in
reasing mobility. The in
reased waiting time of RRwith in
reased load when the network 
onne
tivity is low is due to longer averageroute lengths. In the simulation trials, the average route length roughly doubledwhen the 
onne
tivity de
reased from 80% to 20%. The performan
e gap betweenwaiting time for RL and RR is seen to a lesser degree at high 
onne
tivity,when average route length in RR is lower. However, it is apparent that the RRsimulation su�ers from the 
ombined e�e
ts of higher 
ontention and imposedstati
 spanning tree 
ommuni
ation paths at high loads, while RL is mainlya�e
ted by 
ontention for the CS at high loads.Finally, Figure 5 suggests that 
onne
tivity in the range tested is immaterialto the behavior of the RL algorithm at high load, whereas a larger 
onne
tivity isbetter for RR than a smaller 
onne
tivity at all loads. In order to further study



27the e�e
t of 
onne
tivity, we ran the experiments shown in Figure 6: the averagenumber of time units elapsed between host request and subsequent entry to theCS is plotted against network 
onne
tivity in
reasing from 10% (43 links) to 100%(435 links) along the x axis. Curves are plotted for low load, where �req = 10�3(the mean time unit between requests is 103) and high load, where �req = 1 (1mean time unit between requests) for both the RL and RR simulations.

X RL, High Load
RL, Low Load
RR, High Load
RR, Low Load

1

10

100

1000

10 20 30 40 50 60 70 80 10090

X XX

1

10

100

1000

10 20 30 40 50 60 70 80 10090

1

10

100

1000

10 20 30 40 50 60 70 80 10090

(c)

(a)

X X X X X X X

Connectivity

Connectivity

(b)

T
im

e 
U

ni
ts

/C
S 

E
nt

ry
T

im
e 

U
ni

ts
/C

S 
E

nt
ry

T
im

e 
U

ni
ts

/C
S 

E
nt

ry

Connectivity

XXXXXXXX X X

X X X X X X X X X X

Figure 6. Conne
tivity vs. Time/CS entry for (a) zero, (b) low, and (
) high mobilityFigure 6 
on�rms that 
onne
tivity does not a�e
t the waiting time per CSentry in the RL simulation at high load. At high load, the RL algorithm does notexploit 
onne
tivity. When load is high, the RL simulation always sends requestmessages over the path last traveled by the token, even if there is a shorter path tothe token when the request is made. At low load in RL, 
onne
tivity does a�e
tthe waiting time per CS entry be
ause request messages are not always sent overthe path last traveled by the token. This is be
ause with lower load there issuÆ
ient time between requests for token movement to 
hange link dire
tion inthe vi
inity of the token holder, an e�e
t that in
reases with higher 
onne
tivity,shortening request paths.



28 The waiting time for the RR algorithm de
reases with in
reasing 
onne
-tivity, sin
e the path lengths between neighbors in the virtual spanning treeapproa
h one. However, even with a 
lique, when shortest path lengths are allone, the time for RR does not mat
h that for RL. The reason is that the spanningtree used by RR for all 
ommuni
ation might have a relatively large diameter,whereas in RL neighboring nodes are always in dire
t 
ommuni
ation.The results of the simulations in this se
tion are summarized in Table 1. Thistable in
ludes data points from both sets of graphs depi
ted in this subse
tion.The 
hosen data points show average waiting time for high (80%) and low (20%)
onne
tivity and for high and low loads in all mobility s
enarios.Table 1Summary of time per CS entry.Zero Mobility Low Mobility High Mobility20%a 80%a 20%a 80%a 20%a 80%aRR high load 185 107 185 140 294 290RL high load 75 75 63 63 49 49RR low load 17 8 39 25 60 35RL low load 7 4 5 5 6 7a Initial network 
onne
tivity.6.2. Average number of messages per CS entryThe RR algorithm sends request and token messages along the virtual span-ning tree. Ea
h message from a node to its virtual neighbor is 
onverted into asequen
e of a
tual messages, that traverse the (
urrent) shortest path from thesender to the re
ipient.The RL algorithm sends Request and Token messages along the a
tual tokenoriented DAG. In addition, as the token traverses a path, ea
h node on thatpath sends LinkInfo messages to all its outgoing neighbors. Additional LinkInfomessages are sent, and propagated, when a link failure 
auses a node to lose itslast outgoing link.Our experimental results re
e
t the relative number of routing messages forRR vs. LinkInfo messages for RL. When interpreting these results, it is important
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Figure 7. Load vs. Messages/CS Entry for (a) zero, (b) low, and (
) high mobilityto remember that the simulation of the RR algorithm is not 
harged for messagesneeded to re
al
ulate the routes due to topology 
hanges. Thus, if RL is betterthan RR in some situation, it will 
ertainly be better when routing messages are
harged to it, even if they are prorated. Also, if RR is better than RL in anothersituation, depending on how mu
h better it is, RL might be 
omparable or evenbetter than RR when routing messages are 
harged to RR.Figure 7 plots the average number of messages re
eived per CS exe
utionagainst values of �req ranging from 10�4 (the mean time units between requestsis 104) to 1 (the mean time units between requests is 1) from left to right alongthe x axis. Plots are shown for runs with 20% (87 links) and 80% (348 links)
onne
tivity for both the RL and RR simulations.Figure 7(b) and (
) show that the RR algorithm sends fewer messages perCS entry than the RL algorithm in all simulation trials with mobility, althoughas load in
reases the message advantage of RR de
reases markedly.



30 In all situations studied, ex
ept the RL simulation in the stati
 
ase withhigh 
onne
tivity, the number of messages per CS entry tends to de
rease as loadin
reases. The reason is that, although the overall number of messages in
reaseswith load in both algorithms, due to the additional token and request messages,it in
reases less than linearly with the number of requests, and hen
e less thanlinearly with the number of CS entries. In the extreme, at very high load, everytime the token moves, it is likely to 
ause a CS entry.In the stati
 
ase with high 
onne
tivity, the RL algorithm experien
es athreshold e�e
t around load of .01: when load is less than .01, the number ofmessages per CS entry is roughly 
onstant at a lower value, and when the load isabove .01, the number of messages per CS entry is roughly 
onstant at a highervalue. The threshold e�e
t be
omes less pronoun
ed as 
onne
tivity de
reases.We 
onje
ture that some qualitative behavior of the algorithm on a 30 node graph
hanges when load in
reases from .001 to .01. This 
hange may be attributedto the observation that token movement more e�e
tively shortens request pathlength at high 
onne
tivity with low load. This is be
ause at low load there issuÆ
ient time between requests for nodes to re
eive LinkInfo messages sent asthe token moves, 
ausing nodes to send requests over dire
t links to the tokenholder rather than over the last link on whi
h they sent the token. This e�e
tis ampli�ed at high 
onne
tivity be
ause ea
h node is more likely to be dire
tly
onne
ted to the token holder.The RL algorithm sends more messages per CS entry than the RR algorithmwhen mobility 
auses link 
hanges, and the number of messages sent in the RLalgorithm grows very large under low loads, as 
an be observed in Figure 7(b) and(
). When links fail and form, the RL algorithm sends many LinkInfo messagesto maintain the token oriented DAG, resulting in a higher message to CS entryratio at low loads when the degree of mobility remains 
onstant. However, wheninterpreting these results, it is important to note that the RL algorithm is being
harged for the 
ost of routing in the simulations with mobility, while the RRsimulation is not 
harged for routing.Figure 8 shows the results of experiments designed to understand the e�e
tof 
onne
tivity on the number of messages per CS entry. In the �gure, theaverage number of messages per CS entry is plotted against network 
onne
tivityin
reasing from 10% (43 links) to 100% (435 links) from left to right on the xaxis. Curves are plotted for low load, where �req = 10�3 (the mean time unitsbetween requests is 103) and high load, where �req = 1 (the mean time units
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Figure 8. Conne
tivity vs. Messages/CS Entry for (a) zero, (b) low, and (
) high mobilitybetween requests is 1) for both the RL and RR simulations.In the stati
 
ase, the number of RL messages per CS entry in
reases linearlywith 
onne
tivity, for a �xed load. As 
onne
tivity in
reases, the number ofneighbors per node in
reases, resulting in more LinkInfo messages being sent asthe token travels. However, the number of RR messages per CS entry de
reases(less than linearly) with 
onne
tivity, sin
e the shortest path lengths betweenneighbors in the virtual spanning tree de
rease. In fa
t, our results for RR at100% 
onne
tivity (when the virtual spanning tree is an a
tual spanning tree)and high load mat
h the performan
e of approximately 4 messages per CS entry
ited by Raymond [25℄ at high load.Part (a) of Figure 8 shows that in the stati
 
ase the RL algorithm usesfewer messages per CS entry below 25% 
onne
tivity for high load and below60% 
onne
tivity for low load.Figure 8(b) and (
) show that, in the dynami
 
ases, the number of messagesper CS entry is little a�e
ted by 
onne
tivity for a �xed load. In the RL algorithm,



32there are two opposing trends with in
reasing 
onne
tivity that appear to 
an
elea
h other out: higher 
onne
tivity means more neighbors per node, whi
h meansmore LinkInfo messages will be sent with ea
h failure. On the other hand, moreneighbors per node means that it is less likely for a link failure to be that of thelast outgoing link, and thus LinkInfo messages due to failure will propagate less.For the RR 
ase, the logarithmi
 s
ale on the y axis in Figure 8(
) hides the slightde
rease in messages per CS entry, making both 
urves appear 
at.The results of the simulations in this se
tion are summarized in Table 2. Thistable in
ludes data points from both sets of graphs depi
ted in this subse
tion.The 
hosen data points show average number of messages for high (80%) and low(20%) 
onne
tivity and for high and low loads in all mobility s
enarios.Table 2Summary of messages per CS entry.Zero Mobility Low Mobility High Mobility20%a 80%a 20%a 80%a 20%a 80%aRR high load 13 6 11 7 30 20RL high load 10 27 24 25 109 109RR low load 27 13 35 20 60 50RL low load 13 17 189 180 1900 1825a Initial network 
onne
tivity.7. Con
lusion and Dis
ussionWe presented a distributed mutual ex
lusion algorithm designed to be awareof and adapt to node mobility, along with a proof of 
orre
tness, and simulationresults 
omparing the performan
e of this algorithm to that of a stati
 token basedmutual ex
lusion algorithm running on top of an ideal ad ho
 routing proto
ol.We assumed there were no partitions in the network throughout this paper forsimpli
ity; partitions 
an be handled in our algorithm by using a method similarto that used in the TORA ad ho
 routing proto
ol [22℄. In [22℄, additional labelsare used to represent the heights of nodes, allowing nodes to dete
t, by re
ognitionof the originator of a 
hain of height in
reases, when a series of height 
hangeshas o

urred at all rea
hable nodes without en
ountering the \destination". A



33similar partition dete
tion me
hanism 
ould be en
orporated into our mutualex
lusion algorithm at the expense of slightly larger messages.Our algorithm 
ompares favorably to the layered approa
h using an ad ho
routing proto
ol, providing better average waiting time per CS entry in all testeds
enarios. Our simulation results indi
ate that in many situations the message
omplexity per CS entry of our algorithm would not be greater than the message
ost in
urred by a stati
 mutual ex
lusion algorithm running on top of an ad ho
routing algorithm, when messages of both the mutual ex
lusion algorithm andthe routing algorithm are 
ounted.A
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