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Abstract

With the increasing popularity of portable wireless computers, mechanisms to ef-
ficiently transmit information to such clients are of significant interest. The environ-
ment under consideration is asymmetric in that the information server has much more
bandwidth available, as compared to the clients. It has been proposed that in such
systems the server should broadcast the information periodically. A broadcast schedule
determines what is broadcast by the server and when.

In this report, we present an algorithm for scheduling broadcast in such environ-
ments. This algorithm is based on a fair queueing algorithm [6], and can be executed
in O(log M) time, where M is the number of information items. The algorithm signif-
icantly improves the time-complexity over previously proposed broadcast scheduling
algorithms. We evaluate performance of the algorithm and find it to be close to op-
timal. We also present an algorithm to coordinate broadcasts over multiple channels,
and evaluate its performance for two channels.
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Preface: This report discusses scheduling algorithms for single channel and multiple chan-
nels. This problem is also addressed in [23]. This report, however, gives a new algorithm for
multiple channel scheduling which is not only more general but also more efficient in terms
of performance than [23]. However, the single channel scheduling algorithm proposed in [23]
is again presented here for the sake of continuity. This report does not address transmission
errors unlike [23]. However, the algorithms presented here can easily be modified to take
transmission errors into account.

1 Introduction

Mobile computing and wireless networks are fast-growing technologies that are making ubiq-
uitous computing a reality. Mobile and wireless computing systems have found many ap-
plications, including Defense Messaging System (DMS), Digital Battlefield and Data Dis-
semination (BADD) [9], and as a general-purpose computing tool. With the increasing
popularity of portable wireless computers, mechanisms to efficiently transmit information
to such clients are of significant interest [9]. For instance, such mechanisms could be used
by a satellite [21] or a base station [2] to communicate information of common interest to
wireless hosts. In the environment under consideration, the downstream communication ca-
pacity, from server to clients, is relatively much greater than the upstream communication
capacity, from clients to server. Such environments are, hence, called asymmetric communi-
cation environments [2]. In an asymmetric environment, broadcasting the information is an
effective way of making the information available simultaneously to a large number of users.
For asymmetric environment, researchers have previously proposed algorithms for designing

broadcast schedules [2, 3,4, 8, 10, 13, 14, 15, 16, 11, 20, 21, 25, 26].

We consider a database that is divided into information items. The server periodically
broadcasts these items to all clients. A broadcast schedule determines when each item is
transmitted by the server. We present a new approach to design broadcast schedules that
attempts to minimize the average “access time”. Access time is the amount of time a client
has to wait for an information item that it needs. It is important to minimize the access
time so as to decrease the idle time at the client. Several researchers have considered the
problem of minimizing the access time [2, 3, 4, 8, 10, 15, 16, 25, 26].

The algorithms presented in this report are on-line algorithms. An on-line algorithm
does not a priori generate the broadcast schedule. Instead, the algorithm determines which
item to broadcast next when the server is ready to broadcast an item. On-line algorithms
are of interest as they can quickly adapt to time-varying environments.

The time-complexity involved in determining the next item to broadcast is critical.
Our previous work [21] includes a number of on-line algorithms each with linear time com-
plexity in number of items. Linear time-complexity in number of items may become intol-
erable when the server has a large number of items to broadcast. Techniques like bucketing



have previously been used to reduce the complexity while sometimes compromising perfor-
mance [21]. This report presents two algorithms, based on packet fair queueing [6, 5, 18, 19],
both having the time-complexity of O(log M), where M is the number of information items.
This is a significant improvement in time-complexity over previously proposed algorithms
with comparable performance. The proposed algorithms can easily be extended to take
transmission errors into account as wireless environments are subject to such errors [23].

In environments where different clients may listen to different number of broadcast
channels (depending on how many they can afford), the schedules on different broadcast
channels should be coordinated so as to minimize the access time for most clients. We
extend the proposed algorithm to a system where the server can broadcast simultaneously
on multiple channels, and the clients may listen to one channel or both channels.

The rest of the report is organized as follows. Section 2 introduces terminology, and
derives some theoretical results that motivate the proposed algorithms. Section 3 presents
proposed scheduling algorithm for single channel. This algorithm was also presented in [23].
However, the performance evaluation of the algorithm is done using different parameters
in this report. Section 4 presents scheduling algorithm for broadcast on multiple channels.
The algorithm presented here is completely different from the algorithm presented in [23].
Besides, the multiple channel algorithm in [23] gives scheme to schedule only on two channels
and is hard to generalize. Whereas, the Multiple Channel Scheduling Algorithm presented
in Section 4 of this report can be used to schedule any number of channels and performs
better than the previously proposed algorithm. Section 5 evaluates the performance of our
algorithms. Related work is discussed in Section 6. A summary is presented in Section 7.

2 Theoretical Foundation for the Proposed Algorithms
[22]

First we introduce some terminology and notations to be used here [22].

Database at the server is assumed to be divided into many information items. The
items are not necessarily of the same length.

[; represents length of item 2.

The time required to broadcast an item of unit length is referred to as one time unit.
Hence time required to broadcast an item of length [ is [ time units.

e M = total number of information items in the server’s database. The items are

numbered 1 through M.



e The broadcast consists of a cycle of size N time units. (For an acyclic schedule,
N = o0.) The broadcast schedule is repeated after N time units (if N is finite).

Figure 1 illustrates broadcast cycle (1,2,1,3). That is, the items transmitted by the
server are 1,2,1,3,1,2,1,3,1,2,1,3,---. Assume that [y =1, [, =2 and I3 = 3. Then,
size of the broadcast cycle (1,2,1,3)is N=L + L+ L +l3=142+1+3=T.

(1,213 (1,213

1 2 1 3 1 2 1 3 l\

spacing =3 spacing =4

Figure 1: Broadcast schedule

o [nstance of an item : An appearance of an item in the broadcast is referred to as an
instance of the item.

o Frequency of an item : Frequency f; of item ¢ is the number of instances of item ¢ in
the broadcast cycle. The f; instances of an item are numbered 1 through f;. Size of
the broadcast cycle is given by N = S>M, fil; , where [; is the length of item ¢. In the
cycle (1,2,1,3) in Figure 1, f1 =2 and fo = f5 = 1.

e Spacing: The spacing between two instances of an item is the time it takes to broadcast
information from the beginning of the first instance to the beginning of the second
instance. s;; denotes the spacing between j-th instance of item ¢ and the next instance
of item ¢ (1 < j < fi). Note that, after the f;-th instance of an item in a transmission
of the broadcast cycle, the next instance of the same item is the first instance in
the next transmission of the broadcast cycle. For example, in Figure 1, s1; = 3 and
812 = 4.

It all instances of an item ¢ are equally spaced, then s; denotes the spacing for item 2.
That is, si; =5, 1 < j < i

o [tem Mean Access Time of item ¢, denoted ¢;, is defined as the average wait by a client
needing item ¢ until it starts receiving item ¢ from the server. It can be shown that the
item mean access time is minimized when all instances of the item are equally spaced.
That is, s;; = s; for all j [16]. Hereafter, for our theoretical development, we assume
that all instances of item ¢ are spaced s; apart. This assumption cannot always be
realized in practice (See Appendix B), however, the assumption does provide a basis
for developing the proposed algorithms.



We assume that a client is equally likely to need an item at any instant of time (uniform
distribution). Then, the average time until the first instance of item ¢ is transmitted,
from the time when a client starts waiting for item ¢, is s;/2 time units. Hence,

o= = (1)

o Demand probability : Demand probability p; denotes the probability that an item
needed by a client is item 2. The demand probability distribution affects the opti-
mal broadcast schedule. As intuition suggests, items with greater demand probability
should be broadcast more frequently than items with smaller demand probability. We
will later determine the optimal broadcast frequencies as a function of demand prob-
abilities and other parameters.

o Overall Mean Access Time, denoted t,perq11, 18 defined as the average wait encountered
by a client (averaged over all items). Thus,

M
toverall — Z tz D
=1

Using Fquation 1, we obtain t,,c.q as
1 M
loverall = = Z Pi Si (2)
23

The theorem below provides a theoretical basis for the proposed scheduling scheme.

Theorem 1 Square-root Rule: Assuming that instances of each item are equally spaced,
minimum overall mean access time is achieved when frequency f; of each item t is propor-
tional to \/p; and inversely proportional to V0. That is,

. pi
fix 2

Proof: Appendix A presents the proof. a

From Theorem 1 it follows that, there exists a constant K such that f; = K /2. Now

note that, cycle size N = "M fil;. Substituting the expression for f; into this equality, and

solving for K, yields
N

5\11 vV Pi l;

6
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As spacing s; = N/ f;, for overall mean access time to be minimized, we need

N
S; = —

?pi

_ (f W) JE 3)

Substituting this expression for s; into Equation 2, the optimal overall mean access time,
named £,,4maq1, 18 obtained as:

~—

1 —\*
toptimal = 5 (Z Pi lz) (4
=1

(Appendix A also presents a derivation of the above expression.)

Loptimar 1 derived assuming that instances of each item are equally spaced. As illus-
trated in Appendix B, the equal-spacing assumption cannot always be realized. Therefore,
Loptimal Tepresents a lower bound on achievable overall mean access time. The lower bound,
in general, is not achievable. However, as shown later, it is possible to achieve overall mean
access time almost 1dentical to the above lower bound.

3 Proposed Broadcast Scheduling Scheme [23]

In this section, we consider the case when the information items are broadcast on a single
channel. Section 4 considers multiple channel broadcast.

As noted above, for an optimal schedule, spacing between consecutive instances of
item ¢ should be obtained using Equation 3. Equation 3 can be rewritten as

li

l;
S_i (Z]]\il \/pjlj) \/g ?)

Let ¢; denote the right-hand side of Equation 5. That is, ¢; = L —. Then, we
(2, vi) /&
have l;/s; = ¢;. Thus, the two conditions for obtaining an optimal schedule are: (i) i—’ = &;

for each item ¢, and (ii) all instances of each item ¢ should be spaced equally apart with
spacing s;. Note that i_i is the fraction of broadcast bandwidth allocated to item z. It turns
out that the above two conditions are similar to those imposed on “packet fair queueing”
algorithms [5, 6]. Although the problem of packet fair queueing is not identical to broadcast

scheduling, the similarities between these two problems motivated us to adapt a packet fair



queueing algorithm in [5, 6] to broadcast scheduling. The broadcast scheduling algorithm,
thus obtained, is presented below.

For each item z, the algorithm maintains two variables, B; and C;. B; is the earliest
time when next instance of item ¢ should begin transmission, and C; = B; 4+ s;. (It may
help the reader to interpret C; as the “suggested worst-case completion time” for the next
transmission of item i.)

Single Channel Broadcast Scheduling Algorithm

Step 0: Determine optimal spacing s; for each item ¢, using Equation 3.
Current time is denoted by T'. Initially, 7" = 0.
Initialize B; =0 and C; = s; for 1 <¢: < M.
Step 1: Determine set S of items for which B; < T
That is, S ={i | B; <T, 1 <i< M}.
Step 2: Let C,,;, denote the minimum value of C; over all items ¢ in set 5.
Step 3: Choose item j € S such that C; = C,,;,. If this equality
holds for more than one item, choose any one of them arbitrarily.
Step 4: Broadcast item j at time T
B; =C;
CJ‘ = B]' + s;
Step 5: When item j completes transmission, increment 7" by [;.
Go to step 1.

The algorithm iterates steps 1 through 5 repeatedly, broadcasting one item per iteration.
In each iteration, first the set S of items with begin times B; smaller than or equal to T is
determined. The items in set S are “ready” for transmission. From among these items, the
items with the smallest C; (suggested worst-case completion time) is chosen for broadcast.

Using the heap data structure [12], steps 1 through 4 can be implemented such that,
the average time complexity per iteration is O(log M ). Bennett and Zhou [6] cite a O(log M)
fair queueing implementation that can be used to implement the above algorithm. Their
implementation is apparently presented in [5]; however, we are unable to obtain a copy of
[5] at this time. It is possible that their implementation of fair queueing is analogous to the
implementation summarized below. Keshav [17] also presents a heap-based implementation
of fair queueing. However, his fair queueing algorithm is somewhat different from that in
[6].

We maintain two binary heaps, Hg and Ho. Heap Hp has item with smallest B;
value, among all its items, at its root. H¢ has item with smallest C; value, among all its
items, at its root. (Heap Ho implements set S.) Every item belongs to exactly one of the
two heaps at any given time. In the beginning, Hg contains all the items and H¢ is empty.
In Step 1 of the above algorithm, set S can be determined by repeatedly removing items j



from the root of Hp until B; > T or Hp becomes empty, and inserting them into He. Note
that after every removal of an item, Hg is to be reheaped. Both insertion and removal of an
item in a binary heap (including reheaping) takes O(log M) time. Step 2 can be performed
by removing the root item from H¢ again in O(log M) time. An item j that is broadcast
(after removal from H¢) is inserted back into Hp in step 4 (after the new B; and C; values
are calculated). The insertion requires O(log M) time as well. Note that, in some iterations,
more than one item may be removed from heap Hg (in step 1) and added to heap H¢, while
in some iterations no item may be removed from Hpg.

Each broadcast instance of an item j is first inserted in Hg, then removed from Hpg
and inserted into H¢, then removed from H¢, and transmitted. Thus, each item transmitted
requires 4 heap operations, resulting in an average time complexity O(log M). (Another way
to arrive at this conclusion is to observe that, because one item is added to heap Hpg in each
iteration, on average only 1 item can be removed from Hp per iteration.)

As an illustration, assume that the database consists of 3 items, such that [; = 1,
Iy =2,13=3,p =0.5, pp =0.25, and p; = 0.25. In this case, s; = 3.224, s, = 6.448 and
s3 = 7.989. In the first iteration of the above algorithm, at step 2, By = By = By =T =0,
and (7 = 3.224, Cy = 6.448 and C3 = 7.989. During the first iteration, S = {1,2,3}, as
T = 0 and for all items B; = 0. As (y is the smallest, item 1 is the first item transmitted.
During the second iteration of the algorithm, T'=1, By = 3.224, By = B3 =0, (] = 6.448,
Cy = 6.448 and C5 = 7.898. Now, S = {2,3} (as B = Bs=0<T =1,and By >T). As
Cy < (5, item 2 is transmitted next. Figure 2 shows the first few items transmitted using

the above algorithm. After an initial transient phase, the schedule became cyclic with the
cycle being (1,2,1,3).

[l 21 3 [afaf 2[af s [a] 20a] 3 [af 2faf s [a] 2[af s |

Figure 2: [llustration of the Single Channel Scheduling Algorithm.

Simulations show that the above algorithm attempts to use optimal spacing and
frequency for each item (i.e., actual spacings and frequencies are approximately equal to
the optimal values). Performance measurements for the above algorithm are presented in
Section 5. In general, as illustrated in Section 5, the proposed on-line algorithm performs
close to the optimal obtained by Equation 4.

4 Multiple Broadcast Channels

The discussion so far assumed that the server is broadcasting items over a single channel
and all the clients are tuned to this channel. One can also conceive an environment in which
the server broadcasts information on multiple channels [24], and different clients listen to



different number of channels depending on the desired quality of service (as characterized
by the mean access time).

In this section, we present an on-line algorithm for scheduling broadcast on multiple
channels. Let ¢ denote the total number of channels available to server. We assume that
the channels are of equal capacities. A client can listen to any number of channels it
wants (can afford). The idea is fairly simple. The server generates a schedule assuming
only one channel using Single Channel Scheduling Algorithm explained in Section 3. It
then broadcasts successive instances of an item in the single channel schedule on successive
channels in a cyclic manner.

Single Channel Schedule

A B A BA A B B A B B A A A B B A BB A
[l 2] s [alal 2[af 3 [aof 2[a] 3 [af 2]af s [a] 2[af
chamd A 11l 3 [ 2J1] 3 [ 2[1] 3 ]
chawmed B | 2 [1[1] 3 [ 2[afa] 3 | 2 [4]

Figure 3: Hlustration of Multiple Channel Scheduling Algorithm for two channels and three
items. The server alternately assigns instances of an item from the single channel schedule
to the two channels.

As an example, refer to Figure 3 which illustrates the algorithm for three items: 1, 2
and 3, and for two channels namely A and B. First of all, the server generates a schedule
using Single Channel Scheduling Algorithm (Section 3) as shown in Figure 3. (This algorithm
can be implemented on-line as shown later.) It then labels the successive instances of item 1
in the schedule as A and B alternately. Similarly successive instances of each of items 2 and
item 3 are also labelled as A and B alternately. Note that the labelling for item 1 is started
with A, for item 2 with B and for item 3 with . This is just a heuristic for initialization
which most of the time improves the multi-channel schedules. The schedules for channels
A and B are then generated by selecting items from single channel schedule sequentially
and inserting them in the appropriate channel schedule depending upon their labels. The
resulting schedules are shown in Figure 3. Note that most of the time, two different items
are broadcast on channels A and B at any instant. This improves the overall mean access
time for a client listening to both the channels as compared to a client listening to only one
of the two channels.

Similarly, Figure 4 shows how the algorithm can be used to generate schedules for
three channels namely A, B and C.

The examples above might make the reader believe that the algorithm for scheduling
multiple channel broadcast is off-line, that is, the server needs to generate the schedules a
priori, and that the algorithm cannot be used to determine next item to broadcast on some

10



Single Channel Schedule
B C B C C A A B B B C C C A A

A B A C A
(2] s [afaf 2Vaff s [aff2fa] s Va] 2 [af s [af 2}aff s |
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came B [ 2 [1[1] 3 [ 2]1[1] 3 | 21
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Figure 4: lllustration of Multiple Channel Scheduling Algorithm for three channels and three
items. The successive instances of each of the items from single channel schedule are assigned
to the three channels in cyclic fashion.

particular channel h whenever the channel is idle. However, the same algorithm can easily
be made on-line by maintaining queues );, for every channel 2, 1 < h < ¢ and inserting
the items which are scheduled for channel h, if the channel is busy, in queue );,. A formal
description of algorithm is given hereunder :

Multiple Channel Scheduling Algorithm

Step 0: Determine optimal spacing s; for each item ¢, using Equation 3.
Let T denote virtual time. (T is just a variable whose value would be used by
Single Channel Scheduling Algorithm as current time and its value does not
represent actual time in this algorithm. Hence, here T' is said to be
virtual time.) Initialize T'=0, B, = 0,C; = s;,1 <@ < M, and create
empty queues @, 1 < h < e Also initialize last; = (. mod ¢) + 1, 1 <¢ < M.
last; holds the channel number over which item 7 was last broadcast.

The remaining steps are executed to find an item to broadcast next on channel A
at any time, 1 < h < ec.

Step 1:  if @5, 1s not empty then

{

Step 2: Select item j from the front of @)y,
Step 3: last; = h
}
else
{
Step 4: Use Single Channel Scheduling Algorithm to determine item j to broadcast next

using virtual time T\, B; and C;,1 < < M. (The values of T, B; and C;
are changed by single channel scheduling algorithm as shown in Section 3)

11



Step 5: Let nextch = (last; mod ¢) + 1

Step 6: if nexteh # h
{
Step T: enqueue item j at the end of Q,cpren
Step 8: last; = nextch
Step 9: goto Step 4
}
Step 10: last; = nextch

}

Step 11:  Broadcast item j on channel h

This algorithm, on average, requires O(log M) time per iteration (steps 1 through
11).

Section 5 evaluates the above algorithm for two channels, that is, for ¢ = 2, and
compares the overall mean access time achieved by the algorithm with analytical lower
bounds. If a client listens to only one channel, then Equation 4 provides a lower bound
(toptimat) for the client’s overall mean access time. If, however, a client listens to both
channels, then the access time experienced by the client may reduce by at most a factor of
2. Therefore, a lower bound on the overall mean access time for a client listening to both
channels is t,ptimat/2, Where t,,timar is obtained using Equation 4.

5 Performance Evaluation

In this section, we present simulation results for various algorithms presented above. In each
simulation, number of information items M is assumed to be 1000. Each simulation was
conducted for at least 8 million item requests by the clients. Other parameters used in the
simulation are described below.

5.1 Demand Probability Distribution

We assume that demand probabilities follow the Zipf distribution (similar assumptions are
made by other researchers as well [1, 2, 3, 4, 26]). The Zipf distribution may be expressed
as follows:

/) :
ey s

where f is a parameter named access skew coefficient. Different values of the access skew
coefficient 8 yield different Zipf distributions. For 8 = 0, the Zipf distribution reduces

12



to uniform distribution with p;, = 1/M. However, the distribution becomes increasingly
“skewed” as @ increases (that is, for larger 6, the range of p; values becomes larger). Different
Zipf probability distributions resulting from different 6 values are shown in Figure 5(a).
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Figure 5: (a) Access Probability against Item Number for various values of access skew
coefficient 0 used in simulation. (b) Increasing and Decreasing Length Distributions.

5.2 Length Distribution

A length distribution specifies length [; of item ¢ as a function of ¢, and some other parame-
ters. In this report, we consider the following length distribution.

Ly —L . .
li:rOUHd<<ﬁ)(l—l)+Lo), 1§Z§M

where Lo and L are parameters that characterize the distribution. Lo and L; are both
non-zero integers. round () function above returns a rounded integer value of its argument.

We consider two special cases of the above length distribution, obtained by choosing
appropriate integral Lo and Ly values.

o [ncreasing Length Distribution : In this case, Lo = 1 and L; = 10 . In this case, [; is
a non-decreasing function of ¢, such that 1 <[, <10, 1 <: < M.

o Decreasing Length Distribution : In this case, Ly = 10 and L; = 1 . In this case, [; is
a non-increasing function of ¢, such that 1 <[, <10, 1 <: < M.

13



Figure 5(b) shows the two length distributions. The labels “inc” and “dec” denote
Increasing and Decreasing Length distributions, respectively. In addition to these length
distributions, we also use a random length distribution obtained by choosing lengths ran-
domly distributed from 1 to 10 with uniform probability. Figure 6 shows the Random Length
Distribution so generated. We have used these distributions in our previous work [24] as
well.

12 |

random

Length B ceee v e e e e e e e e e e e e e e et ee e e e e ee e

0 100 200 300 400 500 600 700 800 900

Item Number

Figure 6: Random Length Distribution generated by randomly choosing integers from 1 to
10 with uniform probability.

5.3 Request Generation

For our simulations, we generated two requests for items per time unit. Simulation time is
divided into intervals of unit length; two requests are generated during each such interval.
The time at which the requests are made is uniformly distributed over the corresponding
unit length interval. The items for which the requests are made are determined using the
demand probability distribution.

5.4 Performance Evaluation for Single Channel Broadcast

In this section, we evaluate the Single Channel Scheduling Algorithm explained in Section
3. Figure 7(a) shows the simulation results. It plots overall mean access time against access

14
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skew coefficient #. The curves labelled “dec”, “inc” and “rand” respectively correspond to
decreasing, increasing and random length distributions defined in Section 5.2. Similarly, the
corresponding analytical lower bounds obtained from Equation 4 are also plot in Figure 7(b)
for comparison.
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Figure 7: Overall mean access time against access skew coefficient 8. The simulation curves
are obtained using algorithm given in Section 3. The values obtained by simulation are within
0.5% of the corresponding analytical values.

From the simulation results in Figure 7, observe that the proposed Single Channel
Scheduling Algorithm performs very close to optimal. These results confirm that the al-
gorithm is able to space instances of each item with approximately ideal spacing, thereby
achieving near-optimal overall mean access time.

5.5 Performance Evaluation for Multi-Channel Broadcast

In this section, we evaluate performance of Multiple Channel Scheduling Algorithm explained
in Section 4. We have simulated the algorithm for two channels, that is, for ¢ = 2. Figures
8,9 and 10 plot the overall mean access time against access skew coefficient 8 for decreasing,
increasing and random length distributions respectively. The curves labelled “chl sim” and
“ch2 sim” are the curves obtained from simulation when client listens to one out of the
two channels and both channels, respectively. The curves labelled “chl opt” and “ch2 opt”
are the plot of t,p1imar and toptimal/2 respectively where t,p1imaq is obtained from Equation 4.
Note that simulation results obtained for the case when the client listens to one out of two
channels are different from those obtained in Section 5.4. In Section 5.4, broadcast is on
single channel using algorithm in Section 3, whereas in Figures 8, 9 and 10, broadcast is on
two channels using the algorithm in Section 4. Also note that for the case of two channels,

15



the best access time that the client can observe is half of the optimal overall mean access
time obtained for single channel case, that is, t,ptima/2. To sum up, clients listening to one
channel or two channels both experience overall mean access times close to their respective
lower bounds. The simulation results show that the proposed scheduling algorithm performs
well for two channels.
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g 1500 4. ... . o
S =
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0.25 0.5 0.75 1

THETA

Figure 8: Overall mean access time against access skew coefficient 0 for Decreasing Length
Distribution. The simulation results labelled as sim are within 12.6% of analytical lower
bounds labelled as opt.

6 Related Work

The algorithms presented in this paper are based on an algorithm proposed previously for
“packet fair queueing” [6, 5, 18, 19]. As noted earlier, the problem of optimal broadcast
scheduling is closely related to design of good packet fair queueing algorithms.

The problem of data broadcasting has received much attention lately. The existing
schemes can be roughly divided into two categories (some schemes may actually belong to
both categories): Schemes attempting to reduce the access time [4, 3, 2, 1, 13, 16, 10, 8, 26]
and schemes attempting to reduce the tuning time [14, 15]. However, proposed on-line
algorithms have not been studied previously.

Ammar and Wong [4, 26] have performed extensive research on broadcast scheduling
and obtained many interesting results. One of the results obtained by Ammar and Wong is a
special case of our square-root rule (Theorem 1). Wong [26] and Imielinski and Viswanathan
[13, 25] present an on-line scheme that uses a probabilistic approach for deciding which item
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to transmit. The Single Channel Scheduling Algorithm presented in this report is also on-
line and results in an improvement by a factor of 2 in the mean access time as compared
to the probabilistic on-line algorithm in [13, 25, 26]. Chiueh [8] and Acharya et al. [3, 2, 1]
present schemes that transmit the more frequently used items more often. However, they do
not use optimal broadcast frequencies. Our schemes, on the other hand, tend to use optimal
frequencies.

Jain and Werth [16] note that reducing the variance of spacing between consecutive
instances of an item reduces the mean access time. The two schemes presented in this report
do attempt to achieve a low variance. Jain and Werth [16] also note that errors may occur
in transmission of data. Their solution to this problem is to use error control codes (ECC)
for forward error correction, and a RAID-like approach (dubbed airRAID) that stripes the
data. The server is required to transmit the stripes on different frequencies, much like the
RAID approach spreads stripes of data on different disks [7]. ECC is not always sufficient
to achieve forward error correction, therefore, uncorrectable errors remains an issue (which
is ignored in the past work on data broadcast).

We previously proposed algorithms [21, 24, 23] for scheduling broadcast in presence
of errors, and for multiple channels. In [23], we discussed broadcasting on two channels.
However, the algorithm proposed in [23] does not perform as well as Multiple Channel
Scheduling Algorithm proposed in this report (Section 4) does.

Battlefield Awareness and Data Dissemination (BADD) Advanced Concept Tech-
nology Demonstration (ACTD) is a project in which our research work may be applied
[9]. ACTD is managed and funded by DARPA Information System Services. The mission
behind BADD project is to develop an operational system that would allow information dis-
semination in battlefields, maintain access to worldwide data repositories and provide tools
to dynamically tailor the information system to changing battlefield situations in order to
allow warfighters to view a consistent picture of the battlefield.

7 Summary

This report considers asymmetric environments wherein a server has a much larger com-
munication bandwidth available as compared to the clients. In such an environment, an
effective way for the server to communicate information to the clients is to broadcast the
information periodically.

We propose a new on-line algorithm for scheduling broadcast on single channel called
Single Channel Scheduling Algorithm, with the goal of minimizing the access time in asym-
metric environment. The algorithm uses near-optimal frequencies for each item — these
frequencies are determined as a function of item lengths, demand probability, and error
rates. The proposed algorithm has O(log M) complexity which is significantly lower than
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a previous algorithm with comparable performance. Simulation results show that our algo-
rithm performs quite well (very close to the theoretical optimal).

When different clients are capable of listening on different number of broadcast chan-
nels, the schedules on different broadcast channels should be designed so as to minimize
the access time for all clients. The clients listening to multiple channels should experience
proportionately lower delays. This report presents an algorithm for scheduling broadcasts
on multiple channels called Multiple Channel Scheduling Algorithm and evaluates its per-
formance for two channels. Simulation results show that this algorithm also performs close
to optimal.

8 Future Work

The Single Channel Scheduling Algorithm, explained in Section 3, is based on the idea of
Worst-case Fair Weighted Fair Queueing Algorithm (WF?Q) presented in [5] which addresses
the issue of fair allocation of bandwidth to different sessions flowing through a node on a
single outgoing link. The WF?Q algorithm tries to emulate Generalized Processor Sharing
(GPS) [18] scheduling discipline. GPS is an idealized algorithm that assumes that the
packets are infinitely divisible and hence cannot be implemented in practice. WF2Q closely
approximates GPS just like Single Channel Scheduling Algorithm closely approximates the
ideal conditions given in Section 3. The way we used WF2Q to schedule broadcast makes us
believe that there exists some relationship between the problem of broadcast scheduling and
weighted fair queueing. Currently, we are trying to map the broadcast scheduling problem
to weighted fair queueing problem so that a practical solution to any one of these could
easily be adapted for the other.

In addition to this, the multiple channel scheduling problem maps to the case of
allocating bandwidth to different sessions flowing through a node on multiple outgoing links.
This could be an interesting problem and to our knowledge, no one has addressed this
issue yet. The mapping between the problems of multiple channel broadcast scheduling
and weighted fair queueing with multiple outgoing links is one of the topics of our current
research.
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A Appendix: Proof of Theorem 1 [22]

Proof: Asinstances of item ¢ are spaced equally, the spacing between consecutive instances
of item ¢ is N/ f;, where N = Zj]\il f;l; is the length of the broadcast cycle. From Equation 2,
we have

1 M
loverall = = Z Pi Si (6)
2 =1
Define “supply” of item ¢, r; = % Thus, r; is the fraction of time during which item ¢ is
broadcast. Now note that, >M r; = M, f]"\l/ = % = 1. Now, Equation 6 can be rewritten
as,
1 pils
Lovera = 3 7
i 5 ; - (7)
As M r. =1, only M — 1 of the r;’s can be changed independently. Now, for the optimal
values of r;, we must have % = 0, Vi. We now solve these equations, beginning with
0 — Ioverall
87’1 .

atoverall 1 a M pzlz
0 = = -
87“1 2 87“1 (Z ;

=1 T

_ 19 pl_ll_l_]wz_:llei_l_ parlu _ L(_mbh pulu
287“1 ™ i—2 T (1—25\11_17“2) 2 T% (1_25\11—1742
pli ol
fr— - —
R L
. pzlz leM
Similarly —— =
B B (S S

From Equations 9 and 10, we get

pili palo 5 pih
2T T2 T T AT
1 T2 T2 pala
. . r; pili ..
Similarly it can be shown that — = , Vi,
r pil;
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This implies that, the optimal r; must be linearly proportional to v/p;l;. It is easy to
see that constant of proportionality a = s \/— exists such that r; = a/p;l; is the only
=1

possible solution for the equations % = 0. From physical description of the problem, we

know that a non-negative minimum of ¢ must exist. Therefore, the above solution is unique

A/ pili
ZJN; pilj

and yields the minimum ¢. Substituting r; = into Equation 7, and simplifying,

yields optimal overall mean access time as

it = 3 (32 m)

=1

Also, the optimal frequency of item 2, f; may be obtained as f; = T’IN x pilijlvf = /EN.

7

Thus, we have shown that, optimal frequency f; is directly proportional to 7;—: a

B Equal-Spacing Assumption

Equation 3 provides an expression for optimal spacing between instances of an item 2z, 1 <
¢t < M. It may not be possible to achieve this spacing in reality.

Assume that number of items is M = 3, and cycle size N = 6. Let length of each
item be 1. For a certain probability distribution, the optimal item frequencies and spacing
are as follows: s1 =2,s,=3,53=6, 1 =3, =2, f3=1.

In this case, an attempt to schedule the cycle quickly shows that, it is impossible to
schedule instances of item 1 equally spaced at distance 2, and instances of item 2 equally
spaced at distance 3. To do so requires that one instance of item 1 and 2 both be scheduled
at the same time! This is called a “collision”. Collisions are not permissible in a real
schedule, as two items cannot be transmitted on the same channel simultaneously. This
example illustrates that, in general, collisions prevent us from spacing instances of each item
2 equally apart.
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