Static and Dynamic Location Management in Distributed Mobile
Environments *

P. Krishna T N. H. Vaidya D. K. Pradhan
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112
E-mail: {pkrishna,vaidya,pradhan}@cs.tamu.edu
Phone: (409) 862-2599
June, 1994

Technical Report # 94-030

Abstract

Location management is one of the most important issues in distributed mobile computing.
Location management consists of location updates, searches and search-updates. An update oc-
curs when a mobile host changes location. A search occurs when a host wants to communicate
with a mobile host whose location is unknown to the requesting host. A search-update occurs
after a successful search, when the requesting host updates the location information correspond-
ing to the mobile host. Various strategies can be designed for search, update and search-update.
Static location management uses one combination of search, update and search-update strategies
throughout the execution. Simulations were carried out to evaluate the performance of different
static location management strategies for various communication and mobility patterns. It was
noticed that performing search-updates significantly reduced the search costs with very little
cost to pay for updates (upon moves and searches).

In order to obtain good performance using static location management, the system designer
should a priori have a fair idea of the communication and the mobility pattern of the users.
Having this information, the system designer can select the combination which performs best for
the given values of communication and mobility. The host behavior (communication frequency,
mobility) is not always available to the system designer. Thus, there is a need for dynamic
location management. In this paper we present a scheme for dynamic location management.
The basic philosophy behind dynamic management is that the past history of the system will
reflect the behavior in the future. Hence, by keeping track of the past history and modifying the
management strategy accordingly, one expects to perform well for any call and mobility pattern.
Simulation results show that the performance of dynamic location management is better than

static location management.

*Preliminary version will appear in the Proceedings of Third International Conference on Parallel and Distributed
Information Systems, 1994. Research reported is supported in part by AFOSR
"Direct all correspondence to P. Krishna.

1 Introduction

Mobile computing is rapidly becoming a major trend in the communications market. Mobile
computing gives users the information accessing capability regardless of the location of the user.
Users of portable computers would like to carry their laptops with them whenever they move from
one place to another and yet maintain transparent network access through the wireless link. With
the availability of wireless interface cards, mobile users are no longer required to remain confined
within the static network premises to get network access. In order to communicate with an user,
one needs to know the user’s location. Thus, the network faces a problem of continuously keeping
track of the location of each and every user. This problem becomes noticeable when the network

sizes are large.

Location managementis one of the most important problem in distributed mobile computing.
Location management consists of location updates, searches and search-updates. An update occurs
when a mobile host changes location. A search occurs when a host wants to communicate with
a mobile host whose location is unknown to the requesting host. A search-update occurs after
a successful search, when the requesting host updates the location information corresponding to
the mobile host. The goal of a good location management scheme should be to provide efficient
searches and updates. The cost of a location update and search is characterized by the number of
messages sent, size of messages and the distance the messages need to travel. An efficient location

management strategy should attempt to minimize all of these parameters.

Providing connection-oriented services[5, 6, 7, 8, 12] to the mobile hosts requires that the
host be always connected to the rest of the network in such a manner that its movements are
transparent to the users. This would require efficient location management in order to minimize

the time taken for updates and searches, so that there is no loss of connection.

In this paper we present several location management strategies based on a hierarchical
tree structure database. These strategies try to satisfy the goal of providing efficient searches
and updates. A location management strategy is a combination of a search strategy, an update
strategy, and a search-update strategy. Static location management uses one combination of search,
update and search-update strategies throughout the execution. This paper presents the results of
simulations carried out to evaluate the performance of various static location management strategies

for various call and mobility patterns.

In order to obtain a good performance using static location management, the system designer
should a priori have a fair idea of the call and the mobility pattern of the users. Having this
information, the system designer can select the combination which performs best for the given
values of call and mobility. This information is not always obtainable. Thus, there is a need for
dynamic location management. The basic philosophy behind dynamic management is that the

past history of the system will reflect the behavior in the future, and hence by keeping track of the

past history and modifying the management strategy accordingly, one expects to perform well for
any call and mobility pattern. In this paper we present preliminary ideas and results for dynamic

location management.

This paper is organized as follows. Section 2 presents a review of related literature. Section 3
presents the system model for a distributed system with mobile hosts. Section 4 presents the static
location management strategies, and Section 5 presents the simulation results for the various static
location management strategies. Section 6 presents the dynamic location management scheme and

conclusions are presented in Section 7.

2 Review of Related Literature

Numerous location strategies have been proposed in the recent years. One of the earlier works
which dealt with object tracking was done in 1986 by Fowler [10]. Fowler deals with techniques
to efficiently use forwarding addresses for finding decentralized objects. The environment is an
object-oriented computer system, where the objects are allowed to move between processes. If a
process wants to perform an operation on an object, it has to first locate it. Fowler proposed the
use of forwarding pointers to keep track of these objects. As explained later, our paper borrows

the idea of manipulating forwarding pointers upon a successful search.

Awerbuch et. al. proposed a theoretical model for online tracking of mobile hosts [3]. The
architecture is assumed to be a hierarchy of “m-regional matching directories”. FEach node u in
the data-structure maintains sets read(u) and write(u). The sets are such that, if there is a node
v which is at a distance of less than m from u, the intersection of read(u) and write(v) is non-
null. The same applies for read(v) and write(w). The cost of moves and updates was derived to
be polylograthmic in the size and diameter of the network. They also use forwarding pointers.

Regional matching directories are used to enable localized updates and searches.

Badrinath et. al. examined strategies that reduced search costs and at the same time
control the volume of location updates by employing user profiles [2]. The architecture consists of
a hierarchy L of location servers which are connected to themselves and to the base stations (or
mobile support stations) by a static network. Each user is assumed to be registered under one of
the location servers called the home location server (HLS). The user profiles were used to create
partitions. When the user crosses partitions, does the update takes place. As explained later, our

paper uses a similar architecture, but, does not assume a home location server (HLS').

Spreitzer et. al. proposed a network architecture which consists of user agents, and a location
query service (LQS) [14]. The paper deals with tracking of hosts and providing some privacy to the
user. The user agents are responsible to forward any communication to or from the user. There is

a dedicated user agent per user. Currently the location tracking is done using mechanisms such as

infra-red-based active badge tracking, device input activity from various computers, and explicitly
specified information obtained directly from the users. The user agent always know the current
location of the user. The LQS is used to provide ways of executing different location queries that
offer different trade-offs between efficiency and privacy. This scheme was mainly aimed for local
networks such as in building premises. As the number of hosts in a network increase, it might not

be efficient to have a dedicated user agent per user.

Wu et. al. dealt with the idea of caching location data at the Internet Access Point(/AP) [11].
Here, the I AP will maintain location data of some of the hosts. This becomes useful when optimal
routing decisions are to be taken. If the TAP did not have an entry for a host, the message is
forwarded to the Mobile Router (MR) which maintains information of all the hosts. It is a very
simple idea that will be effective for local networks. However, when the network sizes increase, the
MR will become a serious bottleneck, and one has to resort to more efficient location management

techniques.

3 System Model

In this section we present a model for a distributed system with mobile hosts. As shown in Figure 1,
mobile networks generally comprise of a static backbone network and a wireless network. There
are two distinct sets of entities, namely mobile hosts and fixed hosts. A host that can move while
retaining its network connection is called a mobile host (mh) [1]. The static network comprises of
the fixed hosts and the communication links between them. Some of the fixed hosts, called mobile
support stations (MSS)! are augmented with a wireless interface, and, they provide a gateway for
communication between the wireless network and the static network. Due to the limited range of
wireless transreceivers, a mobile host can communicate with a mobile support station only within a
limited geographical region around it. This region is referred to as a mobile support station’s cell.
The geographical area covered by a cellis a function of the medium used for wireless communication.
Currently, the average size of a cell is of the order of 1-2 miles in diameter [1]. As the demand
for services increase, the number of cells may become insufficient to provide the required grade
of service. Cell splitting [15] can then be used to increase the traffic handled in an area without
increasing the bandwidth of the system. In future, the cells are expected to be very small (less
than 10 meters in diameter) covering the interior of a building [4]. A mobile host communicates
with one mobile support station (MSS) at any given time. MSS is responsible for forwarding data
between the mobile host (mh) and static network. Due to mobility, mh may cross the boundary
between two cells while being active. Thus, the task of forwarding data between the static network
and the mobile host must be transferred to the new cell’s mobile support station. This process,

known as handoff, is transparent to the mobile user [4]. The initiative for a handoff can come

! Mobile support stations are sometimes called base stations.

Mobile Support Station

Mobile Host

Figure 1: Model of a distributed system with mobile hosts

from the mobile host or the mobile support stations. Handoff helps to maintain an end-to-end

connectivity in the dynamically reconfigured network topology.

4 Static Location Management

A location management strategy will be a combination of the search strategy, an update strategy,
and a search-update strategy. Figure 2 illustrates the space of location management strategies
discussed in this paper. In this paper, we are going to discuss location management strategies in

the absence of a home location server (HLS).

Search Strategy

WithHLS @

Without HLS @

® ® L Update
imi Strat
No Update Lazy Limited Full egy
Update Update Update
Jump Update
Path Compression
Update
Search-Update
Strategy

Figure 2: Space of Location Management Strategies

4.1 Logical Network Architecture (LN A)

Mobile systems consist of mobile hosts, mobile support stations (base stations), and location

servers. The logical network architecture (LN A) is a hierarchical structure (tree) consisting of

2. As shown in Figure 3, the mobile support sta-

mobile support stations and location servers
tions (M SS) are located at the leaf level of the tree. Each M 5SS maintains information of the
hosts residing in its cell. The other nodes in the tree structure are called location servers (LS).
Each location server maintains information regarding mobile hosts residing in the subtree beneath

it.

Figure 3: Logical Network Architecture

Each communication link has a weight attached to it. The weight of a link is the cost of
transmitting a message on the link. Let [[src][dest] represent the link between nodes sre¢ and dest,
and, let w(l) represent the weight of the link /. The cost depends on the size of the message, the
distance between the hosts, and the bandwidth of the link. For analysis purposes, we assume that,

for all I, w(l) = 1. Essentially, our cost metric is the number of messages.

4.2 Data Structures

There is an unique “home” address for every mobile host. The home address is the identifier/name
of the mobile host. The “physical” addresses of a mobile host might change, but its home address
remains the same, irrespective of the host’s location [12, 13]. Each LS maintains an address
matching table that maps the home address to the physical address of the mobile hosts residing
in the subtree beneath it. Thus, the problem of location management basically focuses on the

management of the address matching table.

There is a location entry in LS corresponding to a host h, if the host & is in one of the cells

in the subtree of a location server LS. If the host A moves to a cell which is not in the subtree
of LS, then the entry corresponding to h is updated (as explained later) at LS. All the nodes

maintain location information using 3-tuples which have the following elements : (i) Mobile host

2Typically location servers correspond to the mobile switching centers.

identifier (¢d), (ii) Forwarding pointer destination (fp_dest), and, (ii) Time at which last forwarding
pointer update took place (fp_time). Fach location server maintains a 3-tuple for each mobile host
residing in the subtree beneath it, and each mobile support station maintains a 3-tuple for each

mobile host residing in its cell.

The default value of fp_dest and fp_timeis NULL. Forwarding pointer destination (fp_dest)
is the location of mobile host. If the fp_dest field of a host h is NULL in the location server L,
then, h is not in one of the cells in the subtree of L. Let us illustrate the use of forwarding pointers
with an example. Let us suppose that we are using a strategy which uses forwarding pointers for
location updates. Let a host & reside initially in cell ¢. The M S5 of the cell ¢ will have an entry
(h, NULL,NULL). Let there be a location server L which maintains information of the hosts
residing in cell ¢. There will be an entry (h,c¢, NULL) corresponding to host h at L. Let host h
move to a new cell ¢/, which is not a part of the subtree of L. Let ¢ be the local time at the M S5
of cell ¢ at which the change of location of h is recorded at the MSS. Let ¢’ be the local time at
L at which the change of location of h is recorded at L. Thus, the location information of h will

be (h,c,t") at L, and, (h,c,t) at MSS of cell c.

A Note: The above data structures contain fp_time field to store time. The fp_time entry
for a data structure on a node, say v, contains the local time at node v when the data structure was
last modified. We will denote this time as ¢ in the following. It should be noted that the correctness

of the algorithms does not require the clocks at various nodes to be tightly synchronized.

4.3 Initial Conditions

It is assumed that, initially, the location information of the mobile hosts is stored in the correspond-
ing location servers i.e., each location server (L.S) should be having the correct location information
for all the hosts residing in the cells in its subtree. Thus, the root location server should have the
correct location information of all the hosts in the system. Let us illustrate this with an example.
In Figure 4, nodes 1-7 are location servers, and 8-15 are mobile support stations. There are two
mobile hosts 21 and k2. In the initial state, host Al is in cell 8, and k2 is in cell 12. Initially, the
correct location information of host Al will be available at the location servers {4,2,1}. Likewise,
the location information of h2 will be available at the location servers {6,3,1}. Thus, the location

information of a host is available at all the location servers located on the path from its current
MS'S to the root.

Location
Servers

Figure 4: An Example

4.4 Update Protocols

The strategies for updating the location information at the location servers and the mobile support

3

stations, when the host moves”®, are as follows.

Let src and dest be the identifier of the source and destination cell, respectively. Let h be
the identifier of the mobile host. Let ¢ be the local time at the node at which the change of location
of h is recorded at the node. i.e., for example, ¢ is the local time at the M 5SS of dest at which a
location entry is added at the M55,

4.4.1 Lazy Updates (LU)

This is the simplest update scheme. Updates take place only at the MSS of the source and
destination cells. A forwarding pointer is kept at the source M 55. The updated entry at the source
MSS becomes (h,dest,t). An entry for host h, (h, NULL,NULL) is added at the destination
MSS. The location information at the location servers are not updated. The cost of update is

zero, because there are no update messages being sent.

4.4.2 Full Updates (FU)
Upon a move, apart from the M .SSs involved (i.e., the M 5SS of the source and destination cells),

location updates take place in all the LSs located on the path from the M S5 of the source and

destination cells to the root. The scheme and an example illustrating it follows.

Source cell:

®Here movement of the host implies that the host crosses cell boundary.

1. At the M SS : For host h, set fp_dest = dest, and fp_time = t. The updated entry for host
h at the M SS becomes (h,dest,t).

2. All location servers on the path from src to the root : The M .SS of src sends update message
to these location servers. Upon receipt of the update message, the location servers update

the entry for h to (h,dest,t).

Destination cell:

1. At the MSS : An entry (h, NULL,NULL) is added for host h. If there was an old entry
for h, it is overwritten by this new entry. There can be only one entry per host (i.e., M SS

or location server).

2. All location servers on the path from dest to the root : The M 5SS of dest sends update
message to these location servers. Upon receipt of the update message, the location servers
create an entry (h,dest, NULL). If there was an old entry, it is overwritten by this new

entry.

Therefore, in an H-level tree, the update cost* per move is 2(H — 1). Let us illustrate this
scheme with an example. Suppose in Figure 4, host 21 moves from 8 to 14. Forwarding pointer
to 14 will be kept at M S5 8. MSS 8 sends update message to {4,2,1}, and these location servers
also maintain forwarding pointer to 14. An entry for 21 will be made at M55 14. M 5SS 14 sends
update message to the location servers {7,3,1}, and these location servers also make an entry for
host hl.

4.4.3 Limited Updates (LMU)

Update in the location information takes place at a limited number of level of location servers in
the tree. Here updates occur at m(< H) lower levels of location servers on the path to the root.
Updates at these location servers are similar to the FU scheme. The location servers at levels
higher than m are not updated. Thus, the update cost per move is 2m. Let us illustrate this
scheme with an example. Let the value of m be chosen to be 1. Suppose in Figure 4, host hl
moves from 8 to 14. Forwarding pointer to 14 will be kept at M S5 8. MSS 8 sends an update
message to {4}, and 4 maintains forwarding pointer to 14. An entry for hl will be made at M S5
14. M SS 14 sends an update message to {7}, and 7 makes an entry for host hl.

* As stated earlier, the cost metric is the number of messages.

4.5 Search Protocol

If a host h in cell C' wants to communicate with another host A/, h has to know the location of A'.
This requires that host & search for host i/, As stated earlier, we do not make explicit use of home
location server (HLS) for searches. The search process in the absence of a HLS is as follows.
If the mobile support station of C' has no location information for h’, it forwards the location
query to the next higher level location server on the path to the root. If that location server does
not have any location information for A’, it again forwards the location query to the next higher
level location server on the path to the root. This process repeats until a location server which
has location information for A’ is reached. Once the location information (cell identifier) for A’ is
obtained, the location query is forwarded to the M SS of the cell. Host &’ is either in the cell of
MSS,or, MSS has a forwarding pointer corresponding to h’. If host A’ is in the cell of M S5, the
search is complete. Flse, a chain of forwarding pointers is traversed till the M 55 containing the

host A’ is reached. The search protocol is as shown in Figure 5.

Initially, the search cell is C'.
Step 1 : If the M 5SS of the search cell has an entry for i/,
If fp.dest = NULL, host h' is in the search cell. Search for A’ is complete.
Else search cell = fp_dest. Repeat step 1.
Else forward the query to the next higher level location server on the path to the root.
Step 2 : If the location server has an entry (b, fp_dest, fp_time) for b’ :
If fp.dest # NULL, search cell = fp_dest. Go to step 1.
Forward the query to the next higher level location server on the path to the root.
Go to Step 2.

Figure 5: Search Protocol

4.6 Search-Update Protocols

Location management becomes more efficient if the location updates also take place after a suc-
cessful search. For example, suppose there is a host h that frequently calls A, and A’ is highly
mobile. It makes sense to update the location information of A" after a successful search, so that
in the future if h calls again, the search cost is likely to reduce. The location information update
takes place at the MSS of the caller. Let host h be the caller, and host A’ be the destination
host. Let the location of & and h’' be C' and C’ respectively. Following are the strategies to update

location information upon a search.

4.6.1 No Update (NU)

In this strategy, there are no location updates. But, the fp_time field of the entry corresponding
to A’ at the MSSs on the search path are updated to the current time at the M SS. The cost is
zero. This is because the update of the time field could be done during the search process itself,
and no additional messages need to be sent for this purpose. The update in fp_time is done to
avoid purging of the forwarding pointer data at the M5 Ss. The purge protocol is explained in the

next section.

4.6.2 Jump Update (JU)

In this strategy, a location update takes place only at the caller’s M55, i.e., MSS of the cell C.
The entry for A’ at the MSS of cell C' is set to (h',C’,t), where t is the local time at the M55
when the location information is updated. The update cost is 1. This is because only one message

needs to be sent from the M55 of C” notifying the location information of host h'.

4.6.3 Path Compression Update (PCU)

In this strategy, upon a successful search, a location update takes place at all the nodes in the
search path. All the location servers on the search path have the entry of b’ updated to (h',C", 1),
where ¢ is the local time at the location server when the location information is updated. All the
M SSs on the search path including the caller’s M55 have an entry of A’ updated to (h',C",1),
where ¢ is the local time at the M 5SS when the location information is updated. Let us illustrate
with an example. In Figure 4, let host k1 call host h2. Suppose the location information of A2 is
available only at the location servers {6,3,1}. Using the search protocol described previously, the
search path will be 8 — 4 — 2 — 1 — 12. The location updates take place at location servers

{4,2,1}, and M55 8. The update cost is the length of the search path, which in this example is 4.

4.7 Purging of Forwarding Pointers

We need to periodically purge the stale forwarding pointers at the location servers and the mobile
support stations. This should be done in order to (i) save storage space at the nodes, and (ii)
avoid storing stale location information. It does not make any sense to keep the forwarding pointer
information for a host h, if no other host is going to query this location server for the location
information of k. We use a design parameter mazimum threshold call interval (MTC1T) to decide

whether to purge a forwarding pointer information or not. Let the current time be curr_time. If

10

fptime # NULL, and curr_time — fp_time > MTCI®, then the entry for the host is purged from
the MSS. If curr_time — fp_time < MTCI, it means that there is some other host in the system

which has recently used the forwarding pointer information of s.

In the location servers, if the fp_time # NULL and curr_time — fp_time > MTCT for a
host, the location entry for the host is purged.

4.7.1 Updating of Forwarding Pointers with a Purge

When LU and LMU strategies are used, the forwarding pointers at higher level location servers
do not get updated, and become stale. Thus, these forwarding pointers get purged periodically.
However, some of the searches for the host might reach the higher levels. If the location servers
at the higher levels do not have the information of the host, the root has to broadcast to find out
the location. To avoid this, the forwarding pointers at the location servers on the path to the root
from the current M 55 must be updated periodically along with purging. This is achieved by the
current M SS of each mobile host by sending a location update message to the location servers on
the path to the root.

5 Simulations

A trade-off exists between the cost of updates (upon moves and searches) and cost of searches.
The parameters that affect this trade-off are (i) call frequency, and (ii) mobility. In this paper
we will evaluate the effects of mobility and call frequency on the cost of updates, search-updates
and searches. As stated earlier, the location management strategy is a combination of a search
strateqy, an update strateqy and a search-update strategy. The search protocol is the same for all
location management strategies. A total of 9 static location strategies are obtained using above
strategies for updates and search-updates. We performed simulations to analyze the performance of
the proposed location management strategies for various call frequency and mobility values. The
location management strategies simulated were obtained by choosing one update strategy (say XX,
where XX = LU, F'U or LMU) and one search-update strategy (say YY, where YY = NU, JU or
PCU). The location management strategy thus obtained is denoted as XX-YY.

5.1 Model

We assume a binary tree as the logical network architecture for the simulations. The height of the

(H-1)

tree is H. The number of location servers in the network is 2 — 1, and the number of mobile

®Note that the fp_time value for a host residing in the cell will be NULL. So we are considering hosts which are
currently not residing in the M SS5’s cell and whose forwarding pointer information is stored at the M SS.

11

support stations (or the number of cells) is 2(H-1) Physical proximity of the cells under the same
location server is assumed. This will help in determining short and long moves. The height of the

tree H was chosen to be 10 for the simulations®. Thus, there were 512 cells in the network.

The main aim of the paper is to develop protocols for efficient searches and updates, i.e.,
reduce the number of messages due to location updates, without increasing the number of messages
required for searches. Since, the average message delay is going to be negligible compared to the
call frequency and mobility, we assume that there are no message delays, i.e., the location updates
and searches are immediate. The performance of the schemes is not going to be affected by this

assumption.

Simulations were performed for two types of environments : (i) arbitrary moves and arbitrary
callers, (ii) short moves and a set of callers. In type (i), the user can move to any location (cell),
and, get calls from any other host in the network. This is not necessarily true in real life, but it gives
a fair idea of the performance of the location management schemes in such extreme conditions.
Type (ii) is the closer to real life mobile environments. Users are expected to make a lot of short

moves to nearby destinations, and are expected to receive calls from a specific set of callers (e.g.

family, business colleagues)”.

5.1.1 Call and Mobility Distribution for Type (i)

The time between moves of a host is assumed to follow an exponential distribution with a mean
M. The destination cell is chosen randomly among the 512 cells. The time between calls for a
host is assumed to follow an exponential distribution with a mean . The caller’s cell is chosen

randomly from among the 512 cells.

5.1.2 Call and Mobility Distribution for Type (ii)

Type (ii) consists of generating calls from a specific set of callers and short moves. One option to
generate short moves is to put an upper limit on the length of the move, in terms of number of
cells, and randomly vary the length of the move within the upper limit. For example, in Figure 4,
if we keep an upper limit of 1, the host h2 will be able to move to any cell in the set {11,12,13}.
But, our logical network architecture just assumes proximity of cells which are under the same

location server. Thus, a move from 12 — 11 is not equivalent to the move from 12 — 13.

Instead, we varied the number of levels of location servers where location information would

have been updated due to the move, if FU update strategy were to be used. The number of levels

In existing networks like GSM or Internet, the height will be 3 to 4. Since a binary tree was assumed for the
simulations, we needed to have higher number of levels to have a sizeable number of cells in the network. However,
similar performance trends are expected for other networks.

"The callers are assumed to be immobile. They are either part of the static network, or, do not leave their cell.

12

p(h) T

1 h (H-1)

.

Figure 6: Probability distribution function in terms of height

can be varied between 1 to (f{ —1). Level 0 is the M55 level. Lesser the number of levels affected,
shorter is the length of the move. The probability distribution function of the length of the move

in terms of height (number of levels) is shown in Figure 6.

2
(H-1)(H-2)

p(h) = *«(H —1—h).

The cumulative distribution function (edf) is as follows: edf(h) = S2'_, p(x). We randomly
chose a height h based on the given probability distribution function. The number of choices for the
destination cell is 2". Let the identifier of the current cell (i.e., the source cell) be curr. Knowing
the height h and curr, one can easily determine the ancestor of curr at level h in the binary tree.
Let it be /s. Knowing [s, the set of destination cells possible is {ls* 2" s+ 2" +1,....,ls% 2" 4 2"},
A destination cell is chosen randomly from this set. Let us illustrate with an example. In Figure 4,
for host h2, let the h obtained randomly be 1. Thus the number of choices is 2. The location server
at level 1is 6. Thus, the destination cell is randomly chosen from {12,13}. This is in coherence
with the assumption of proximity of cells under the same location server. The time between moves

of a host is assumed to follow an exponential distribution with a mean M.

In type (ii), for each mobile host, callers were chosen from a specific set of cells. The size of
the set was chosen to be 20. The set was chosen arbitrarily, and were not necessarily neighboring
cells. The calls always originated from those cells. The time between calls for a host is assumed

to follow an exponential distribution with a mean C'.

13

5.1.3 Purge

Purge is performed periodically every MTC'T units of time. The value of MTC'I was chosen to be

10 units of time.

5.2 Cost Model

As stated earlier, the cost of transmitting a message over any link is 1. Therefore, the cost metric
is essentially the number of messages required for each operation (search, update, and search-
update). Thus, the cost of an update is the number of location servers which update the location
information of the host. The cost of a search is the number of location servers and mobile support
stations visited before locating the host. Cost of a search-update is the number of location servers

which update the location information of the host.

The performance parameter of interest is the aggregate cost, defined as the sum of average

update cost, average search cost, and the average search-update cost.

5.3 Results

Simulations were performed to analyze the performance of the various location management strate-
gies. Results were obtained for the two type of environments, Type (i) and (ii). The values of C
and M were both varied from 1 to 15 units of time. Value of €' was changed to vary the time
interval between two successive calls. Value of M was changed to vary the mobility of the host. For

example, C' = 1 and M = 1 characterizes a communication intensive and ultra-mobile environment.

Type(i) : The average length of a move was 170, and the average distance of a call was 170
also. It was observed that the LU-PC strategy outperforms all the other strategies for all values
of M and C'. Therefore, we have only plotted the curves for LU-PC'. The strategies using FU
and LMU suffered due to the high cost of updates upon each move. LU-NU strategy suffered
due to very high search costs. Because the callers were arbitrary, LU-JU strategy did not perform
well as the update upon a successful search was not helping in reducing the search cost. Figure 7
demonstrates the aggregate cost for the LU-PC strategy as a function of €' for different values
of M. As seen in the figure, the aggregate cost increases with ', and decreases with M. This
is because as C' increases, the calls become infrequent, and the hosts might have moved to new
locations, requiring new searches. Thus the reduction in search cost by path compression is not
much effective. We also observe that the rise in aggregate cost with €' is higher for lower values
of M. Lower the value of M, higher is the mobility, and thus the search cost will be higher. At
high values of M, the difference in the aggregate costs due to different values of M is low. This is

14

35

30 -

25 -

20 -

15

Aggr egat e Cost

10

0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Call Interval

Figure 7: Performance of LU-PC for type(i)

because as M increases, the host movement reduces. Beyond a point, increasing M does not affect

the aggregate costs, and the curves converge to a single curve.

Type(ii) : The average length of a move was 9, and the average distance of a call was 110. It
was observed that the LU-PC and the LU-JU strategies outperformed all the other strategies for
all values of M and C. In contrast to Type (i) scenario, LU-JU performed well, because, there
is a specific set of callers. Thus, the jump update at the caller is much more effective in reducing
the search cost, because the caller is going to call the host again with a higher probability than in
Type (i) environment. Figure 8 demonstrates the aggregate cost for the LU-JU strategy and the
LU-PC strategy as a function of €' for different values of M. As seen, LU-JU performs better
than LU-PC in high-communication and low-mobility, and, low-communication and high-mobility
environments. In these environments, the search cost for LU-PC and LU-JU are comparable.
Since the search-update cost is same as the search cost for LU-PC', the aggregate cost for LU-PC
is simply twice the search cost. Whereas, the average search-update cost for LU-JU is less than® or
equal to 1. Thus, the aggregate cost of LU-JU is lower than LU-PC'. LU-PC performs better for
other values of M and C because the search cost for LU-JU becomes large compared to LU-PC.
Figure 9 demonstrates the average search cost for the LU-JU strategy and the LU-PC strategy

as a function of C for different values of M. As seen, LU-P(C has a much lower search cost than

8n cases where the caller has the correct information of the destination host, the search-update cost is zero.

15

18 T T T T T T T
N
LY PC K-
16 e 15, LU-PC -8--
x LU JU -x
X M=10, LU JU -&--
14 M=15, LU-JU %~
12 —
@
8 10 E
[0}
I .
o T
o g R i
=) & X
2 *
< e
6 e - - .
- ¥ e IR |
T T - B
/’/ == * B e
4 P o R
E e
/f’;:%""
2 & -
0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Call Interval

Figure 8: Comparison of LU-PC and LU-JU for type(ii)

LU-JU. The search cost of LU-JU is slightly lower than LU-PC for high-communication and

low-mobility environment.

5.4 Discussion

It was noticed that performing search-updates significantly reduced the search and aggregate costs.
For the logical network architecture assumed, it is seen that the LU-PC strategy performs better
than the other strategies for most of the values of €' and M. It is expected that LU-PC will
perform well in other network models too. For models with different costs associated with each
link, we expect the other proposed strategies to perform well, and sometimes better than the LU-
PC strategy for some values of M and €. As shown in Figure 10a, we expect zones in the M-C
plane, where one scheme will outperform others for the call frequency and mobility values in the
zone. This was evident in the Type (ii) environment. As shown in Figure 10b, the M-C plane is
divided in two zones, LU-JU and LU-PC'. Thus, if the behavior of the mobile hosts (call frequency,
mobility) is known a priori, the designer can obtain such an M-C chart and decide which location

strategy will best suit the system.

In the next section we will present some preliminary ideas and results for dynamic location

management.

16

Aver age Search Cost

16

14

12

10

I | ¢
X Me15, LU-PC -B8-- |

MF10. LU-JU &
M=15, LU-JU -%--

2 4 6 8 10 12 14 16
Call Interval

Figure 9: Comparison of search costs of LU-PC and LU-JU for type(ii)

2~ 4 LU-U
7 LU-PC
M M
1= 3
c c LU-U
E—— E——
(@ Generic Scenario (b) Type (ii) Environment

Figure 10: Partitioning of the M-C' plane

17

6 Dynamic Location Management

The system designer does not always have prior knowledge of the mobility and the call frequency of
the hosts. In these cases, one would require a location management scheme that can dynamically
change the update and search-update strategy, such that the overall overhead incurred due to
updates and searches is minimized. At the same time, we would not want to use up the power of
the mobile hosts to determine the appropriate strategy dynamically. We require the M55 to take
up the responsibility.

6.1 Data Structures

Let 7 be the current time at the mobile host h. M(h) is the sequence of moves of the host h.
M(h) = {mq, mg,...,m,}, where, my = (1, src, dest), i.e., element m4 is a move by the host h at
time ¢ (The time of move is observed at the mobile host h.) from src to dest, , and t1 < t5... < 1.
Fach element of the set M(h), m;, contains two identifiers — the source cell identifier, and the
destination cell identifier. If both identifiers are the same, then the host has not left the cell. This
kind of entry is not necessary (hence will not be present), because it does not affect the location
database. But if the identifiers are different, the source cell should determine whether the move is

long or short.

Cy(h) is the sequence of costs incurred due to updates upon the moves M(h). Cy(h) =

{cu1, Cuzs .oy Cun}, where ¢,; = cost of update upon a move m;.

If another host &' wants to communicate with %, and if & is not in the same cell or if the
MSS of 1/ does not know the cell identifier of h, i’ has to search for h. A set S(h) is maintained
at the current M SS of h. S(h) = {s1, 82, ..., $n}, where sy = (t51,h'); i.e., there was a call from A’
for h at time t,, and t5 < tg9... < tg,. Again, the time of call is observed at the mobile host h.

Cs(h) is the sequence of costs incurred due to the searches S(h). Cs(h) = {cs1, €52, oy Conls
where ¢;; = cost of search s;. Cy,(h) is the sequence of costs incurred due to search-updates upon

searches S(h). Csu(h) = {€suys Couys -o Csup }» Where ¢, = cost of search-update upon the search

Sj.

The data structures are obtained as explained in the next section.

6.2 Basic Idea

The above data structures are stored at the current M 5SS of the host. They get transferred to
the new MSS during handoff. The decision of the type of updates and search-updates are done
by the current MSS. The current M55 uses the data structures to determine the best suited

18

strategy. The appropriate update and search-update strategy will be one of the proposed static

location management update and search-update strategies.

It is assumed that the mobile host h knows the identifier of the cell it is currently residing
in. When a host h moves, h sends a message (containing the identifier of its old cell, and the
time of move) to the new M SS. The new M SS forwards a copy of this message to the old M SS.
The move is recorded as a new element m; in the sequence M(h). The old M SS takes a local
decision (explained later) regarding the updates. The cost of the update is recorded as a new
element ¢,; in the sequence . The new M55 requests the old M S5 for the data structures
corresponding to h. If the new M55 makes any updates, the cost of the update is added to ¢,; in
Cly.

When a host A/ wants to communicate with h, and if & is not in the same cell or if the M S5
of b’ does not know the identifier of the cell of h, A’ has to search for h. A location query message
is sent during the search. This message has a field to store the search cost. At any time, the search
cost field indicates the cost incurred due to the search till now. The search cost gets incremented
as the location query message is forwarded to a new location server or a mobile support station.
Once h is located, a new element s; is added to the sequence S(h) at the M.SS of h. The time of

the call is the time observed at the mobile host A. The search cost is recorded as a new element
cs; to Cs(h). The MSS decides upon the appropriate search-update strategy. It is determined

based on the call history (explained later). For example, if a host h' frequently calls host h, it
makes sense to use JU to reduce the subsequent search cost for #’. The cost of the search-update

is recorded as a new element ¢y, to Cy(h) at the M SS.

6.3 Mobility and Call Frequency
6.3.1 Determining Mobility

Let at time ¢t = 7, M(h) = {my,ma,...,m,}, where m,, = (src,t,,dest), and ¢, < 7. Thus, m,
describes the move of host h that took place at time ¢, from a cell whose identifier = src to a
cell whose identifier = dest. Let At; = (t; — t;—1), where tg = 0. Thus, the average time interval

n
1= Db

between successive moves Atwg = -

We assume a system parameter mazimum threshold move interval (MTMI). If there are
no moves by the host for MTMI amount of time, the host can be declared to be immobile or
stationary. The sets M (h) and C,(h) maintained at the current M S5 are stale because the history
does not reflect the behavior in future anymore. Therefore, they are deleted. In the absence of

M (h) set, the host is assumed to have a high mobility upon the first move.

19

We have defined two degrees of mobility — (i) low mobility, and (ii) high mobility. At any
time 7, let ¢, be the time of the last move by the host. If At,,, < MTMI, the host has a high
mobility, else if Aty,, > MTMI, the host has a low mobility.

6.3.2 Determining Call Frequency

Let at time t = 7, S(h) = {s1, 82, ..., 8}, Where s, = (t5,,h'), and t5, < 7. Thus, s, describes
the call for host h from A’ that took place at time ¢5,. We define an average time interval between

calls for each caller to host h. The average time interval between successive calls of caller A/,

7.1/ Ntg; . .
Atggpglh] = %, where, n’ is the number of calls made by &', and the At,;’s are the time

intervals between two consecutive calls made by host 7'

We assume a system parameter mazimum threshold call interval (MTCT). If there are no
calls by host A’ for MTCI amount of time, the host A’ can be declared to have no communication
with h. The elements corresponding to host A’ in the set S(h) are stale because the history does
not reflect the behavior in future anymore. Therefore, they are deleted. In the absence of S(h)

set, the caller A’ is assumed to be a frequent caller upon the first call of A’ to host h.

Similar to mobility, based on the degree of call frequency, we have two types of caller — (i)
non-frequent caller, and (ii) frequent caller. Then, if Aty [h'] < MTCI, the caller is a frequent
caller, else if Aty [h'] > MTCI, the caller is a non-frequent caller.

6.3.3 Size of Data Structures

The maximum size n of the move set M (h) and search set S(h) can be chosen as a design parameter.
The storage capacity available at the M55 restricts the value of n. The M S5 has to maintain
these sets for each mobile host in its cell. Thus, larger the value of n, higher is the storage cost.
Hence, a small value of n will be preferred. On the other hand, larger the value of n, better will

be the learning of the host behavior, and thus a better predictability will be attained.

6.4 An Example

In this section we will present an example algorithm for dynamic location management. It is for the
network model assumed for static location management strategies. The knowledge of Figure 10b,
and the fact that LU-PC is the best scheme for long moves, will prove to be useful in dynamically
determining the best strategy. From the previous section, we have the techniques to classify the

moves, calls and the mobility of the host. If a host has a lot of frequent callers, the host is being

20

frequently searched, else, if a host has a lot of non-frequent callers, the host is not frequently

searched. The algorithm is as shown in Figure 11.

dynamic()

if (host makes a lot of long moves)
Employ LU-PC.

else if ((frequently searched) and (low mobility))
Employ LU-JU.

else if ((frequently searched) and (high mobility))
Employ LU-PC.

else if ((Not frequently searched) and (high mobility))
Employ LU-JU.

else Employ LU-PC.

Figure 11: dynamic - A dynamic location management algorithm

We present an example where a simple algorithm dynamic as shown in Figure 11 performs
better than the static location management strategies. Simulations were performed for type (ii)
environment. As stated earlier, a mobile host makes a lot of short moves in type (ii) environment.
Thus, the dynamic location management algorithm dynamic makes a choice between LU-JU and
LU-PC based on call frequency and mobility of the host. Figure 12 illustrates the mobility distri-
bution of an user. The x-axis represents the time at which the user moves, and the y-axis represents
the length of the move. Figure 13 illustrates the incoming call distribution for the user. The x-axis
represents the time at which the call is made for the user, and y-axis represents the distance of
the caller from the user. The value of MTCT and MTM1I was chosen to be 10 units of time. For

Mobil'ity Distribution Caller Distribution

80 140 —
' moves’ —— ‘calls’ —
70 - 1 120 E
e 6o r © 100
g 50 | s
_ = 80 |
5 40 t ,
< 8 60 |
= 30 R -
3 20 |] 8 40 ¢
] il N
o Wall 1l M‘ \“ n \‘\M Ll \“ L 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Ti me Ti me
Figure 12: Mobility Distribution Figure 13: Call Distribution

this non-uniform call and mobility distribution, we evaluated the LU-PC, LU-JU and dynamic

21

strategies. We evaluate the aggregate cost?. Figures 14, 15 and 16 illustrates the aggregate cost
for LU-JU, LU-PC and dynamic strategies. For the given call and mobility distribution, results

were obtained for different sizes of the move and call sets. It was observed that the minimum size
of the move and call sets that was required for good performance of dynamic strategy was 7. Fig-

ure 17 illustrates the difference of aggregate cost between dynamic and LU-JU schemes. Figure 18
illustrates the difference of aggregate cost between dynamic and LU-PC'. In Figures 17 and 18,
negative difference implies that dynamicis better. As seen in Figure 17 and Figure 18, LU-JU per-
forms poorly during periods of high-communication, and LU-PC performs poorly during periods
of low-communication. However, on the average, dynamic performs better than both the schemes
during periods of low and high communication, as illustrated in Table 1. Time interval 100.0-200.0
is the high communication period (107 calls or 1.07 calls per unit time). During this period, if
the system designer uses LU-JU instead of dynamic, the network load (in terms of number of
messages) will increase by 33%. Time interval 400.0-600.0 is the low communication period (91
calls or 0.45 calls per unit time). During this period, if the system designer uses LU-PC instead
of dynamic, the network load (in terms of number of messages) will increase by 12%. Because,
the input call distribution was equally distributed between periods of high and low communication
over the fotal runtime, the advantage of using dynamic over LU-PC (4%) and LU-JU (17%) is
not appreciable. However, the results show that a simple dynamic location management algorithm
as shown in Figure 11 performs better than the static location management strategies for any call

and mobility patterns.

10

T T 16 T T T T T
‘costs. JU — 14 ‘costs. PC —
8
- - 12
2] %]
8 6 ‘ 8 10 ‘
(4] (4]
© © 8
(o2} (=2}
> 4 > 6
[=2] [=2]
2 2 . |
2 |
2
. ‘ | ‘ ‘
0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
Ti me Ti me

Figure 14: Aggregate Cost for LU-JU Figure 15: Aggregate Cost for LU-PC

% As stated earlier, we define aggregate cost as the sum of average update cost, average search cost, and the average
search-update cost.

22

Aggr egat e Cost

Ti me

‘costs.dyn” — |

0 100 200 300 400 500 600 700 800 900 1000

Figure 16: Aggregate Cost for dynamic - Size = 7

8 Dynamic - JU 8 Dynamic - PC
6l ‘conp.ju — 6 'conp. pc’ — |
4t 4
S 2t S 2
i 1 o b
. ‘ ’ | H} =S } {H fli
-4 -4
-6t -6
"®0 100 200 300 400 560 600 700 800 900 1000 "®0 100 200 300 400 560 600 700 800 900 1000
Ti me Time
Figure 17: (dynamic — LU-JU) Figure 18: (dynamic — LU-PC)
Interval # Calls | LU-PC | LU-JU | dynamic | Savings over LU-PC | Savings over LU-JU
100-200.0 107 3.32 4.08 3.1 6% 33%
400.0-600.0 91 3.36 3.02 3.0 12% 1%
0.0-1000.0 562 3.35 3.73 3.2 4% 17%

Table 1: Comparison of Average Costs for Non-Uniform distribution

23

7 Conclusions

This paper presents strategies for updates, search-updates, and a search protocol. A location man-
agement strategy is a combination of the search strategy, a update strategy, and a search-update
strategy. Simulations were carried out to evaluate the performance of the various location man-
agement strategies. It was noticed that performing search-updates significantly reduced aggregate
costs. For the logical network architecture assumed, it is seen that the LU-PC (combination lazy
updates and path compression search-update) strategy performs better than the other strategies
for most of the values of C' and M. It is expected that LU-PC will perform well in other network

models too.

Static location management uses one combination of search, update and search-update
strategies throughout the execution. In order to obtain good performance using static location
management, the system designer should a priori have a fair idea of the call and the mobility
pattern of the users. The host behavior (call frequency, mobility) is not always available to the
system designer. Thus, there is a need for a dynamic location management. In this paper we
present preliminary ideas for dynamic location management. The basic philosophy behind dynamic
management is that the past history of the system will reflect the behavior in the future and
hence by keeping track of the past history and modifying the management strategy accordingly,
one expects to perform well for any call and mobility pattern. Simulation results show that the

performance of dynamic location management is better than static location management.

References

[1] T. Imielinski and B. R. Badrinath, “Mobile wireless computing: solutions and challenges in

data management,” Technical Report, Rutgers DCS-TR-296/WINLAB TR-49, Feb. 1993.

[2] B. R. Badrinath, T. Imielinski and A. Virmani, “Locating Strategies for Personal Commu-
nication Networks,” Proc. of the IEFE GLOBECOM Workshop on networking of Personal

Communication, December 1992.

[3] B. Awerbuch and D. Peleg, “Concurrent online tracking of mobile users,” Proc. ACM SIG-
COMM Symposium on Communication, Architectures and Protocols, October 1991.

[4] K. Keeton et.al., “Providing connection-oriented network services to mobile hosts,” Proc. of the
USENIX Symposium on Mobile and Location-Independent Computing, Cambridge, Massachus-
sets, August 1993.

[5] Pravin Bhagwat and Charles. E. Perkins, “A Mobile Networking System based on Internet Pro-
tocol (IP),” Proc. of the USENIX Symposium on Mobile and Location-Independent Computing,
Cambridge, Massachussets, August 1993.

24

[6] J.loannidis et. al., “IP-based Protocols for Mobile Internetworking,” Proc. of ACM SIGCOMM,
1991.

[7] J. Ioannidis and G. Q. Maguire Jr., “The Design and Implementation of a Mobile Internet-
working,” Proc. of Winter USENIX, Jan. 1993.

[8] Charles Perkins, “Providing Continuous Network Access to Mobile Hosts Using TCP /IP,” Joint
Furopean Networking Conference, May 1993.

[9] D. J. Goodman, “Trends in Cellular and Cordless Communications,” IEEE Communications

Magazine, June 1991.

[10] R.J. Fowler, “The Complexity of using Forwarding Address for Decentralized Object Finding,”
Proc. ACM SIGCOMM Symposium on Communication, Architectures and Protocols, 1986.

[11] S. F. Wu and Charles Perkins, “Caching Location Data in Mobile Networking,” IEEE Work-
shop on Advances in Parallel and Distributed Systems, October 1993.

[12] F. Teraoka, Y. Yokote and M. Tokoro, “A Network Architecture Providing Host Migration
Transparency,” Proc. ACM SIGCOMM Symposium on Communication, Architectures and Pro-
tocols, 1991.

[13] H. Wada et. al., “Mobile Computing Environment Based on Internet Packet Forwarding,”
Proc. of Winter USENIX, Jan. 1993.

[14] M. Spreitzer and M. Theimer, “Providing Location Information in a Ubiquitous Computing
Environment,” Tech. Rept., Xerox PARC, 1993.

[15] Jean-Paul Linnartz, “Narrowband Land-Mobile Radio Networks,” Artech House, 1993.

[16] Wall Street Journal Reports, “Telecommunications”, February 11, 1994.

25

