
Efficient Content Location in Mobile Ad hoc Networks

Jivodar B. Tchakarov
Nitin H. Vaidya

University of Illinois at Urbana–Champaign
{tchakaro,nhv}@uiuc.edu

June 9, 2003

Abstract

The advances in wireless networking have enabled
new paradigms in computing. An abundance of in-
formation and services provided by remote servers is
expected to become available to wireless users. A fun-
damental issue in this environment is efficiently lo-
cating needed content. Such content may be in the
form of files, services, or any other kind of data. In
this paper, we describe an algorithm for efficient con-
tent location in location-aware ad hoc networks. The
Geography-based Content Location Protocol (GCLP)
makes use of location information to lower proactive
traffic while minimizing query cost. The results of
our analysis show that GCLP performs favorably in
terms of overhead, latency, and scalability.

1 Introduction

Explosive growth of the Internet has resulted in in-
creasing availability of information and services to
networked users. It has made sharing of data eas-
ier than ever with a few simple clicks of the mouse
button. The rise and fall of a popular file sharing ser-
vice such as Napster has led to the need for new and
more creative protocols for location and sharing of
data. While previous approaches were following the
client-server model, the need for avoiding centralized
responsibility and increasing stability has been the
driving force behind a variety of new approaches that
have been set forth in the context of peer-to-peer file
sharing.

The rise of mobile computing has further increased
the pervasiveness of devices capable of storing data
and requiring the ability to efficiently locate content
available on the Web. Cell phones and wirelessly con-
nected PDA’s have become a new kind of storefront
for e-tailers. Such technical novelties have further
increased the need to efficiently locate not only gen-
eral content but specific services available on the net-

work. Printers, for example, are a common need for
a variety of applications. Given a pervasive wire-
less network, the user may not always be expected to
know the location and characteristics of the device
closest to him.

To deal with this problem, a variety of algorithms
have been presented to solve the problem of re-
source location in ad hoc networks. Some of the
first approaches to appear followed the centralized
client-server architecture. Some examples of such ap-
proaches are presented in [2, 3, 4, 4, 5, 6, 3]. What
all these models have in common is the reliance upon
a centralized storage that would handle queries by
users. This assumption violates the requirements of
ad hoc networks where all nodes should be consid-
ered equal and no one node should be given extra
responsibility when compared to its peers.

Decentralized approaches [12, 9, 10, 7, 8] remove
the reliance upon a central directory server but do
not take link cost into account when computing
routes. This makes them impractical for use in
ad hoc networks. Some protocols have been pro-
posed specifically for such resource poor environ-
ments [19, 16, 22, 18, 20] but these still rely heavily
on the use of broadcast making them too expensive
to operate.

A novel approach to disseminating service infor-
mation is described in [24]. The authors propose the
use of location information for routing. The protocol
provides for all nodes to periodically send advertise-
ments along geometric trajectories. At each node in
the trajectory, a backwards pointer is set up estab-
lishing paths leading to the source host. Any node
that wishes to communicate with another node need
simply send a query along a path that intersects with
the advertisement path. The query is then forwarded
by the node on the path to the desired host. The host
that receives a query may then send a reply to the
requesting node. This idea is further developed in
[25]. The authors propose propagating the advertise-
ments and queries in cross-shaped trajectories, thus

guaranteeing two intersections. Queries are answered
by nodes at the intersection of the advertising and
query trajectories. This is a simple and elegant ap-
proach that may be modified to work for a variety
of resources available in a network. However, as the
number of advertising servers grows, the amount of
proactive traffic becomes prohibitive. Both of these
algorithms assume that each node will advertise a
unique resource. This is not true, however, in many
cases since duplicate content may well exist in a net-
work. An example of such duplicate content may be
several replicas of a file hosted by different servers
or an identical service provided by several nodes in
the network. Under these conditions, the above algo-
rithms will not scale well since they do not take mea-
sures to limit the overhead for duplicate resources.
Solving this scalability problem is a contribution of
this work.

In this paper, we present a content location ser-
vice, the Geography-based Content Location Proto-
col (GCLP) that takes location information into ac-
count to provide an efficient content location ser-
vice to nodes in an ad hoc network. GCLP assumes
that all devices in the network know their own lo-
cation. Since GCLP is meant to operate in an ad
hoc network, it is important to summarize some of
the properties of the environment as they relate to
the content location service. First, we cannot as-
sume a static topology. Nodes may join and leave
the network at any time and node mobility is an ac-
cepted occurrence. Second, the cost of making sure
that everyone knows about everything is prohibitive.
Thus, to locate a specific content, a device need not
be aware of all content available on the network. In
such an environment, GCLP nodes make use of geo-
graphic information to periodically advertise content
they are hosting to nodes along several geographi-
cal directions. Nodes that attempt to locate content
need only contact one of these nodes to become aware
of the presence of the desired content on the net-
work and the closest available server. The proposed
protocol must be scalable, fault-tolerant, adaptable,
and accurate. Since we attempt to work in an envi-
ronment where communication cost is high, we also
want queries to be relatively cheap while still allowing
for lower overhead cost and scalability of the proto-
col. Finally, a response should specify the server that
would result in the cheapest connection as measured
by distance between the server and client. In a uni-
formly distributed dense network, a shorter distance
would translate into smaller number of hops and thus
smaller cost.

2 Geography-based Content
Location Protocol

In this section we provide the design description of
GCLP. We start by giving a brief overview of the
protocol before describing the details of the design.

2.1 Protocol Overview

The proposed protocol treats all nodes in the network
as equal. Thus, no single node takes more responsi-
bility than others. Nodes may assume any of the
following roles, more than one if required. A Con-
tent Server (CS) is a node that hosts one or more
resources that may be used by other nodes on the net-
work. Such nodes are responsible for advertising their
hosted resources to the rest of the network. Content
Location Servers (CLS ’s) are nodes that host location
information about one or more resources available.
These nodes are responsible for providing timely and
efficient responses to queries about specific content.
Clients are nodes that request resources on behalf of
an application or any other higher layer.

The basic protocol follows the scheme described in
[25]. Periodically, a CS will transmit update mes-
sages (UM) to specific nodes in the network. These
updates advertise available resources and the CS that
hosts them. UM ’s follow a predefined trajectory
through the network similar to the trajectory-based
schemes described in Section 1 [24, 25]. This signif-
icantly decreases the amount of proactive traffic as
it is limited to nodes along the trajectories. Nodes
along these trajectories cache the information re-
ceived from the updates. A node that stores such
information becomes a CLS. If it receives a query
about content it knows the server of, it will reply
with the server address.

A client may locate any content on the network
by sending out a query message (QM). The query
is similarly propagated along predefined trajectories.
In a dense network, these trajectories are guaranteed
to intersect at least one update trajectory. The CLS
at the intersection point that receives the query re-
sponds with a reply message (RM) that is sent back
to the client. Upon receipt of a reply, the client may
establish a direct connection with the content server
using the underlying routing protocol to make use of
the available resource. The queries follow a forward-
ing scheme that keeps their cost low while finding the
closest available server in the vast majority of situa-
tions. Finding the closest CS available is an impor-
tant benefit as it generally means fewer hops between
the client and the server, which, in turn, translates
into lower connection cost.

2

To make sure that all nodes on the network know
the location of all their neighbors when selecting next
hop hosts for the updates and queries, a third type
of message is used. A hello message is periodically
broadcast by each node in the network to its one-hop
neighbors to advertise the node’s position.

The following sections explain the functionality of
all three types of nodes in detail. Proofs are provided
to demonstrate the correctness of the protocol and its
ability to keep cost low.

2.2 Protocol Details

This section provides details about the design of
GCLP. It describes the three phases of the protocol –
neighbor discovery phase, content advertisement, and
content discovery. It also presents proof of protocol
correctness and efficiency.

2.2.1 Content Advertisement

Content advertisement is performed by periodically
sending Update Messages (UM) through the net-
work, similar to [25]. Each CS periodically initiates
advertisements by sending UM ’s in four opposite ge-
ographical directions, or trajectories–North, South,
East, and West. Each advertisement specifies the lo-
cation of a single resource at the CS. To accomplish
this, the CS uses the geographic location of its imme-
diate neighbors to select the next CLS in the given
direction. The algorithm for selecting next-hop nodes
is described in detail below. The UM is then sent to
that node. Upon receiving the update, the chosen
CLS adds the information to its Content Location
Table and uses the same algorithm to decide which
node in the direction of the update will be the next
CLS. This continues until a node on the fringe of the
network discovers that there are no neighbors in the
sector along the update’s direction.

This basic advertising algorithm is exemplified in
Figure 1. Here, update messages are being propa-
gated for a particular content server through the net-
work in the four directions. The nodes that are cho-
sen to become CLS ’s are shaded.

An important part of the protocol is the selection
of the CLS nodes along the geographic direction of a
UM. In designing an algorithm several heuristics may
be used:

• Picking nodes closest to the line of the direc-
tion. This keeps the line of CLS ’s straighter but
may not be as efficient since some CLS ’s may be
needlessly close to each other even if nodes are
available farther away in the sector.

Client

Content Server

Figure 1: A Content Server propagating updates
through the network. The server’s selected content
location servers are shaded.

• Picking nodes with greatest distance from the
current node. This may be more efficient as it
provides for greater spaces between neighboring
CLS ’s. However, this approach may lead to up-
date trajectories that are not straight.

• A combination of the two. This is the approach
that we take and we describe the exact algorithm
below.

In [25], the authors propose using the first two ap-
proaches above for selecting next hop nodes in the
update path, i.e., select nodes farthest away from the
current node or select nodes closest to the trajectory
line. We modify this basic selection algorithm as fol-
lows. When selecting next hop CLS ’s, we would like
to achieve two things–cover a larger distance between
CLS ’s and keep the update trajectory as straight as
possible. To accomplish this, each node in the 90◦

sector along the trajectory is assigned a rating based
on Equation 1, where R is the rating for the given
node in the sector, d is the distance from the node
making the decision, and r is the offset from the ge-
ographical direction line. This algorithm allows for
nodes farther away and closer to the perfect trajec-
tory to have highest ratings.

R = d/r (1)

This is further clarified by Figure 2. A node, S, is
considering three possible candidates in the desired
sector, A, B, and C. Based on the formula provided,

3

A

B

C

Direction of

Update

Region of

consideration

S

d

1

d

2

d

3

r

1

r

2

r

3

Figure 2: A node picks the next hop for an update
message among nodes in the appropriate sector.

node B will be selected as the next hop in the trajec-
tory as it will have the highest rating.

The selection of 90◦ as the sector size is dictated by
the need to increase node availability in each sector
given sparse networks. Small sector sizes would not
be suitable since the above rating will tend to prefer
nodes closer to the trajectory (when the sector size is
too small). Thus, we can only benefit from allowing
more nodes to be considered for selecting next hop
neighbors in the update and query trajectories. If a
node cannot find a neighbor in a given sector that it
is trying to transmit to, the trajectory in the given
direction is interrupted.

As described until now, the protocol is simply a
variation on [25] and, like [25], does not scale well.
It does not deal with the possibility of more than
one content server hosting the same resource in the
network. Next, we describe a major component of
our protocol that provides for protocol scalability and
cost efficiency. If UM ’s for duplicate resources are al-
lowed to propagate throughout the network, the re-
sulting traffic will be overwhelming since it would in-
crease linearly with the number of servers hosting the
same content. Instead, each CLS chooses whether to
forward a UM or not. If a CLS receives multiple ad-
vertisements for a particular resource, it will only for-
ward updates from the CS closest to it. In case there
is a tie, the CLS will continue to propagate updates
from the first server it received advertisements from.
The resulting advertisement grid allows for scalabil-
ity of the protocol as each additional replica of a re-
source will introduce less and less proactive traffic

into the network. An example is shown in Figure 3.
This method also has the important property that
each CLS will know the location of servers closest
to them and thus answer queries resulting in data
connections of smallest cost possible as measured by
distance (which is proportional to the number of hops
in dense networks).

Client

Content Server

Content Server

Content Server

Figure 3: Several servers advertise availability of the
same resource. The content location servers for each
server are given in different shades.

2.2.2 Content Discovery

To locate content on the network, a client sends out
a query message through the network in a manner
identical to the UM ’s. A query is sent in the four
geographical directions. The next hop in the query
trajectory is selected using the same algorithm de-
scribed in Section 2.2.1. A content location server
that receives a QM will send a query response mes-
sage (RM) to the requestor. The RM follows regular
greedy geographic routing with each node forwarding
the packet to its neighbor closest to the destination.

The content discovery process is exemplified in Fig-
ure 4. Here a client sends out queries through the
network in four directions. Once the queries reach a
CLS along the update trajectories, it answers with a
response message. The client may receive more than
one response messages to the same query. In such a
case, it picks the response identifying a CS closest to
its geographical location.

4

3 Analysis of GCLP

In this section we provide an analysis of the
Geography-based Content Location Protocol, includ-
ing proof of correctness. It is important to point out
that the network under consideration in this section
is a dense network with nodes at each point in the
logical space. Also, in the context of this discussion
and of a dense network, a hop is assumed to mean
one transmission range.

3.1 Proof of Correctness

To prove that at least one intersection of update tra-
jectories and query trajectories still exists, even with
some update trajectories being interrupted by up-
dates from closer CS ’s, we need to prove that for at
least one trajectory will propagate in each one of the
four geographical directions. The proof is simple and
is illustrated in Figure 5. We have two CS ’s, S1 and
S2. Two CLS ’s, A and B, interrupt some update tra-
jectories and forward others. To prove that at least
one trajectory is propagated in each direction, let us
observe what happens at a point where a trajectory
is interrupted, such as point B in the figure. It is suf-
ficient to observe that in order from one trajectory
to get interrupted, such as the trajectory form S1,
there must exist a server whose perpendicular trajec-
tory causes the interruption at that point, S2. Such
a server would be propagating its own updates in the
direction of the interrupted trajectory. Thus, there

Client

Content Server

Query

Response

Figure 4: A client attempts to locate content by send-
ing queries through the network. The queries are an-
swered once they reach a content location server.

is at least one update trajectory in each direction.

S1

S2

A

B

Figure 5: At least one trajectory will propagate in
the direction of an interrupted update trajectory.

3.2 Scalability Analysis

To provide analytical model of our protocol, we ex-
amine the performance of the protocol in the two ex-
treme cases–when there is a single server in the net-
work and when all nodes in the network are servers.
We then consider how the proactive traffic introduced
by update messages changes with growing the num-
ber of servers in between the two extremes.

In the first case, we have a single content server in
the network for a given resource. Consider a network
of dimensions w by l hops. Any update sent by the
CS in the four directions will have a total cost of w+l.
Thus, in the case of a single CS, the cost is O(w+l).

In the other extreme, consider the case where all
nodes in the network host the same content. In this
case, the updates from each host will be ignored by
their next hop CLS ’s because they already host the
resource. Thus, the cost of each individual update
is O(1), giving a total cost in the network of O(n),
where n is the number of CS ’s in the network.

Rays per Server =
6

2k+1 + 1
(2)

In between the two extremes, we can prove that
the protocol overhead generated per server drops ex-
ponentially as new servers are added to the network.
It can be shown that the amount of proactive traffic
per server as new and evenly spaced servers are intro-
duced into the network will follow a pattern described
in Equation 2. Notice that, as mentioned above, for
large numbers of servers the traffic introduced by new
servers will be constant and the complexity of the al-
gorithm approaches O(n).

5

Our simulations show that the overhead traffic of
the protocol does indeed scale well and additional
servers lead to exponential drops in overhead traffic
per server. The scalability of the protocol is clearly
seen in the simulations presented in Section 4.

3.3 Response Analysis

An desired property for the proposed protocol is the
ability of queries to locate the closest content server
available. However, under certain conditions, this
may not be possible. This anomaly is shown in Fig-
ure 6. There are two servers in this setup, S1 and S2.
They propagate their updates according to the pro-
tocol described in Section 2.2.1. A CLS, CLS1, at the
intersection of the two trajectories from S1 and S2
will only propagate updates from the server closer to
it. In the figure, this means that only updates from
S1 will be propagated by CLS1.

Let us consider the different possible positions of a
client in this environment defined by the update tra-
jectories from S1 and S2 and the line, l, which defines
the set of points of equal distance to both servers. If
a client is on the side of l where S1 is located, then
S1 is the closest server to that client. Queries sent in
that sector will intersect at least one update trajec-
tory from S1 thus resulting in discovering the closest
server. In this case, the closest server is discovered.

If a client is located on the side of l towards S2 and
not between l and the downwards update trajectory
from S1 (i.e., not in the region R in the figure), then
it is closest to S2 and queries from such a client will
intersect at least one update trajectory from S2, thus
again finding the closest server.

The problem occurs when a client, Q, is located in
the region R bounded by the line l and the downwards
update trajectory from S1. In this region, S2 is the
closest server. However, a query will be answered by a
location server, CLS2, positioned on the downwards
trajectory from S1 resulting in locating a server that
is not the closest one, S1 instead of S2. Notice, that
a similar region exists, R′ where S1 is the closest
server but only S2 can be found. In this section we
prove that even in this situation, in the worst case,
the error is relatively small when compared with the
actual distance to the closest content server. This
error is measured as the ratio QS1/QS2, where QS1
is the distance between Q and S1 and QS2 is the
distance between Q and S2.

First, let us examine how the motion of Q along
a line m perpendicular to the line l affects the ratio.
It is easy to see that any move of Q farther from l is
moving it farther away from S1 and closer to S2, in-
creasing the ratio QS1/QS2. Thus, as Q is closer to
the update trajectory, the ratio will be larger, giving

S1

S2

CLS1

Q

a

b

c

QS2

S1 closest

S2 closest

l

m

R

R’

CLS2

90
o

Figure 6: A client, Q, may locate a resource on a
more distant server, QS1, instead of the closer QS2.

us a greater error. For the purposes of the follow-
ing analysis, we assume the worst case where Q is
actually on the trajectory line itself.

Let us express the ratio of QS1/QS2 in terms of the
distances a, b, and c, as shown in Figure 6. Equation
3 shows this formula.

QS1/QS2 = (a + c)/(
√

b2 + c2) (3)

It can be algebraically shown that this gives us a
worst case result as follows:

QS1/QS2 =
√

a2 + b2/b ≤
√

2b2/b =
√

2 (4)

According to Equation 4 we can conclude that, in
the worst case, QS1/QS2 ≤ √

2. Thus, the maximum
error produced by our protocol as measured by the
ratio between the distance found and the actual clos-
est distance is relatively small,

√
2 times the optimal

in a dense network.

6

4 Simulation Results

In this section we evaluate the performance of our
protocol in a simulated environment. The ns-2 sim-
ulator was used to simulate a variety of network con-
ditions. The area over which the simulated network
was situated was 2000 by 2000 meters. A variety of
network densities were simulated. For each case, 20
simulations were run and the results were averaged
to produce the presented data. A sparse network of
50 nodes, moderate density networks of 100 and 200
nodes, and a dense network of 500 nodes were sim-
ulated. Static topologies are presented for networks
of all densities. To study the effects of mobility, a
moderate density network of 100 nodes was evaluated
with varying nodes speeds. The Random Waypoint
mobility model was used to simulate node mobility.
Transmission range of the wireless nodes used for the
simulations was 250 meters.

Several measures were considered when evaluating
the protocol. The proactive traffic due to Update
Messages was a major factor to the scalability and
adaptability of our GCLP. The cost and success rate
of queries is another crucial piece of information. To
evaluate these properties, the following measures are
considered in evaluating protocol performance:

• Updates per Initialization per Server (Up-
IpS): This measure is computed by dividing
the Updates per Initialization by the number of
servers present in the network. This metric is di-
rectly related to the Rays per Server metric dis-
cussed in Section 3.2 since the cost of the ray is
directly proportional to the number of hops in
the network and thus to the number of update
messages necessary.

UpIpS = UpI
Number of Servers

• Hops per Query (HpQ): A goal of the pro-
tocol is to keep query cost low. This measure is
used to quantify the cost of searching the net-
work for content. In our simulations, each node
in the network initiates a query once. The Hops
per Query is calculated by taking the number of
all transmissions of QM ’s and dividing by the
number of queries initiated.

HpQ = Total Query Messages
Number of Queries Initiated

• Success Rate (SR): The accuracy of our proto-
col is measured by this metric. It is computed by
taking into account the number of queries that
receive responses and dividing by the total num-
ber of queries. If a query receives more than one
response, it is only counted as successful once.

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

A
ve

 U
pd

at
e

M
es

sa
ge

s

Servers

100 Nodes - Average Updates per Initialization per Server

Updates per Initialization per Server

Figure 7: Proactive Update traffic per server in a net-
work of 100 nodes as a function of number of servers.

SR = Successful Queries
Total Number of Queries Initiated

These results of the simulations, as measured by
the above metrics, are described in the following sec-
tions.

4.1 Effects of Network Density

This section studies the effects of node density in the
network on the performance of GCLP as measured
by the factors specified in Section 4.

4.1.1 GCLP in Moderate-Density Networks

As seen in Figures 7 and 8, the amount of update
messages per server shrinks rapidly with the addi-
tion of new servers. This pattern relates directly to
the analysis in Section 3.2. The quick drop can be
seen in update traffic per server with the addition of
servers, as well as the constant complexity for large
numbers of servers. This is due to the construction of
the update grid. The above mentioned figures clearly
demonstrate the scalability of the protocol.

The amount of query traffic also decreases rapidly
with the addition of servers. This is to be expected
as the grid grows denser and more nodes have the
ability to answer queries. This property is shown in
Figures 9 and 10.

The success rate for queries is virtually 100 per-
cent in many cases. This is not true however for the
cases of small numbers of servers and particularly in
the less dense 100-node network. We stipulate that
the reason is the non-perfect connectivity in the not
too dense network. However, as redundancy is in-
troduced with the addition of new servers, the suc-
cess rate quickly grows to reach a virtual 100 percent.

7

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180 200

A
ve

 U
pd

at
e

M
es

sa
ge

s

Servers

200 Nodes - Average Updates per Initialization per Server

Updates per Initialization per Server

Figure 8: Proactive Update traffic per server in a net-
work of 200 nodes as a function of number of servers.

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

A
ve

 Q
ue

ry
 H

op
s

Servers

100 Nodes - Average Query Cost

Hops per Query

Figure 9: Query messages generated per application
layer query in a network of 100 nodes.

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140 160 180 200

A
ve

 Q
ue

ry
 H

op
s

Servers

200 Nodes - Average Query Cost

Hops per Query

Figure 10: Query messages generated per application
layer query in a network of 200 nodes.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

A
ve

 S
uc

ce
ss

 R
at

e

Servers

100 Nodes - Total Updates per Initialization per Server

Success Rate

Figure 11: Query success rate in a network of 100
nodes as a function of the number of servers available
on the network.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180 200

A
ve

 S
uc

ce
ss

 R
at

e

Servers

200 Nodes - Total Updates per Initialization per Server

Success Rate

Figure 12: Query success rate in a network of 200
nodes as a function of the number of servers available
on the network.

These tendencies are shown in Figures 11 and 12.

4.1.2 GCLP in High-Density Networks

To simulate a high-density network, 500 nodes were
placed on the same area of 2000 by 2000 meters.

Figure 13 shows the good scalability property of
the protocol as a growing number of servers rapidly
leads to less proactive traffic per server and, eventu-
ally, a constant overhead traffic per server for large
numbers of servers as expected from Section 3.2. This
is due to the construction of the update grid.

The cost of queries also decreases quickly with
growing numbers of servers. This is shown in Figure
14. At the same time, the success rate is virtually
100 percent for any number of servers, as shown in

8

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400 450 500

A
ve

 U
pd

at
e

M
es

sa
ge

s

Servers

500 Nodes - Average Updates per Initialization per Server

Updates per Initialization per Server

Figure 13: Proactive Update traffic per server in a
network of 500 nodes as a function of number of
servers.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400 450 500

A
ve

 Q
ue

ry
 H

op
s

Servers

500 Nodes - Average Query Cost

Hops per Query

Figure 14: Query messages generated per application
layer query in a network of 500 nodes.

Figure 15. This is due to the good connectivity of
the network and its high density.

4.1.3 GCLP in Sparse Networks

The performance of GCLP in sparse networks is eval-
uated next. Figure 16 show that proactive traffic per
server does not seem to vary significantly with the
number of servers. This is due to the low connec-
tivity of the network. In such an environment the
performance of the protocol is lowered by the inabil-
ity of nodes to establish connections with each other
due to limitations of their transmission range.

The cost of queries does not decrease as fast with
the number of servers. This is shown in Figure 17.
The reason behind this is again the lower connectivity
and the inability of the protocol to reliably build the

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 50 100 150 200 250 300 350 400 450 500

A
ve

 S
uc

ce
ss

 R
at

e

Servers

500 Nodes - Total Updates per Initialization per Server

Success Rate

Figure 15: Query success rate in a network of 500
nodes as a function of the number of servers available
on the network.

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 5 10 15 20 25 30 35 40 45 50

A
ve

 U
pd

at
e

M
es

sa
ge

s

Servers

50 Nodes - Average Updates per Initialization per Server

Updates per Initialization per Server

Figure 16: Proactive Update traffic per server in
a network of 50 nodes as a function of number of
servers.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50

A
ve

 Q
ue

ry
 H

op
s

Servers

50 Nodes - Average Query Cost

Hops per Query

Figure 17: Query messages generated per application
layer query in a network of 50 nodes.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

A
ve

 S
uc

ce
ss

 R
at

e

Servers

50 Nodes - Total Updates per Initialization per Server

Success Rate

Figure 18: Query success rate in a network of 50
nodes as a function of the number of servers available
on the network.

update grid. This is further shown in Figure 18 which
shows that the success rate grows slowly with the
number of servers because of the increased difficulty
of constructing the update grid in the low-density
environment and the lower reliability of the queries.

4.2 Effects of Mobility

Mobility is a property of ad hoc networks that leads
to problems for many systems deployed in such net-
works. It is important that mobility does not have a
significant effect on the performance of our protocol
or its adaptability and efficiency in such an environ-
ment will be questionable.

The network under examination is a moderately
dense network of 100 nodes with 250 meters trans-
mission range, deployed in an area of 2000 by 2000

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

U
pd

at
e

M
es

sa
ge

s

Servers

Average Updates per Initialization per Server

0 m/s
10 m/s
20 m/s
30 m/s

Figure 19: Proactive Update traffic per server in a
network of 100 nodes as a function of number of
servers for different node speeds.

meters. Several factors played a role in selecting such
a network topology. First, a network of such density
is of higher possibility of deployment than the very
dense 500 node networks. Also, the ns-2 network
simulator used to run the simulations imposes the use
of a less dense network topology since it does not scale
well with higher numbers of mobile nodes. To mea-
sure the effects of node mobility, scenarios with node
speeds of 10 m/s, 20 m/s, and 30 m/s were compared
against the data from a static network. The same
measures of overhead traffic and query efficiency are
used to analyze performance as described in Section
4.

Figure 19 show that overhead traffic remains virtu-
ally unchanged when mobility is introduced into the
network. We stipulate that the small fluctuations in
the data are due to the different network topologies
and not the presence of node mobility. Thus, our
protocol performs well under conditions where node
mobility exists. Adaptability was one of the require-
ments of our protocol and it has been met according
to our measurements.

The cost of locating content does not seem to vary
significantly with the changes in node speed. As Fig-
ure 20 shows, the hops travelled by query messages
per location attempt is similar for the static topology
and the three dynamic topologies.

An interesting phenomenon occurs when consid-
ering query success rates. As Figure 21 shows, in-
creased node mobility actually seems to lead to min-
imal increases in query success rates for small num-
bers of servers. This is due to the fact that mobile
nodes will lead to location information being present
in more parts of the network as nodes formerly lo-
cated along the update grid travel through the net-

10

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

H
op

s
pe

r
Q

ue
ry

Servers

Average Hops per Query

0 m/s
10 m/s
20 m/s
30 m/s

Figure 20: Query messages generated per application
layer query in a network of 100 nodes for different
node speeds.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

%
 S

uc
ce

ss
fu

l Q
ue

rie
s

Servers

Query Success Rate

0 m/s
10 m/s
20 m/s
30 m/s

Figure 21: Query success rate in a network of 100
nodes as a function of the number of servers available
on the network for different node speeds.

work and answer queries.

5 Conclusion and Future Work

There are a number of possible optimizations to
GCLP. These optimization are the subject of future
work and have not been studied extensively from the
point of view of performance in real-world conditions.
Such optimizations may be used to improve protocol
reliability and efficiency. One optimization is allow-
ing nodes to suppress their updates in a specific direc-
tion if they already have a neighbor in the given direc-
tion that is serving the same content. A possible op-
timization that aims at rerouting trajectories around
empty regions in the network may be employed to
increase fault-tolerance. When a node chooses a next
hop in a trajectory and notices that it has no neigh-
bors in the desired sector, instead of interrupting the
trajectory, it may lookup neighbors in the adjacent
sectors and pick one of them to continue the trajec-
tory. A third variation of the protocol may use a
different heuristic for selecting next hops in trajecto-
ries. A number of other algorithms are possible that
may give more weight to the distance between the
nodes or to the deviation from the perfect trajectory
(e.g., rating R = d2/r). Also possible is the inclusion
of other factors in the algorithm. For example, the
age of entries in the neighbors table may be used to
give more weight to more recent entries.

In this paper we have presented a protocol for con-
tent discovery in location-aware mobile ad hoc net-
works. The protocol, Geography-based Content Lo-
cation Protocol, GCLP, uses location information to
achieve scalability and cost effectiveness as measured
by distance between clients and discovered servers.
We have also presented a mathematical analysis of
our protocol as well as results from our simulations.
Our analysis and simulation results demonstrate that
GCLP is indeed a viable and efficient content discov-
ery scheme.

References

[1] “www.napster.com.”

[2] E. Guttmann, C. Perkins, J. Veizades, and M. Day,
“Service location protocol,” IETF Internet Draft,
RFC 2608, 1999.

[3] H. Chen, D. Chakraborty, L. Xu, and T. Joshi,
“Service discovery in the future electronic market,”
in Proc. Workshop on Knowledge Based Electronic
Markets, AAAI, 2000.

[4] H. Chen, A. Joshi, and T. W. Finin, “Dynamic
service discovery for mobile computing: Intelligent

11

agents meet jini in the aether,” Cluster Computing,
vol. 4, no. 4, pp. 343–354, 2001.

[5] S. D. Gribble, M. Welsh, J. R. von Behren, E. A.
Brewer, D. E. Culler, N. Borisov, S. E. Czerwin-
ski, R. Gummadi, J. R. Hill, A. D. Joseph, R. H.
Katz, Z. M. Mao, S. Ross, and B. Y. Zhao, “The
ninja architecture for robust internet-scale systems
and services,” Computer Networks, vol. 35, no. 4,
pp. 473–497, 2001.

[6] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D.
Joseph, and R. H. Katz, “An architecture for a secure
service discovery service,” in Mobile Computing and
Networking, pp. 24–35, 1999.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker, “A scalable content-addressable net-
work,” in Proceedings of the 2001 conference on ap-
plications, technologies, architectures, and protocols
for computer communications, pp. 161–172, ACM
Press, 2001.

[8] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable Peer-To-Peer
lookup service for internet applications,” in Pro-
ceedings of the 2001 ACM SIGCOMM Conference,
pp. 149–160, 2001.

[9] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong,
“Freenet: A distributed anonymous information
storage and retrieval system,” Lecture Notes in Com-
puter Science, vol. 2009, pp. 46–67, 2001.

[10] A. Rowstron and P. Druschel, “Pastry: Scalable,
decentralized object location, and routing for large-
scale peer-to-peer systems,” Lecture Notes in Com-
puter Science, vol. 2218, pp. 329–??, 2001.

[11] A. I. T. Rowstron and P. Druschel, “Storage man-
agement and caching in PAST, a large-scale, persis-
tent peer-to-peer storage utility,” in Symposium on
Operating Systems Principles, pp. 188–201, 2001.

[12] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph,
“Tapestry: An infrastructure for fault-tolerant wide-
area location and routing,” Tech. Rep. UCB/CSD-
01-1141, UC Berkeley, Apr. 2001.

[13] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y.
Zhao, “Distributed object location in a dynamic net-
work,” Tech. Rep. UCB/CSD-02-1178, Apr. 2002.
Updated version to appear in SPAA 2002.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao, “Oceanstore:
An architecture for global-scale persistent storage,”
in Proceedings of ACM ASPLOS, ACM, November
2000.

[15] Y. Chen, R. H. Katz, and J. D. Kubiatowicz,
“Scan: A dynamic, scalable, and efficient content
distribution network,” in Proceedings of the Interna-
tional Conference on Pervasive Computing (Perva-
sive 2002), (Zurich, Switzerland), August 2002.

[16] V. V. Sumi Helal, Nitin Desai and C. Lee, “Konark
a service discovery and delivery protocol for ad-hoc
networks,” in Third IEEE Conference on Wireless
Communication Networks (WCNC), (New Orleans,
LA), March 2003.

[17] L. Cheng and I. Marsic, “Service discovery and
invocation for mobile ad hoc networked appli-
ances,” in Proceedings of the 2nd International
Workshop on Networked Appliances (IWNA2000),
(New Brunswick, NJ), November 2000.

[18] O. Ratsimor and D. Chakraborty, “Allia: Alliance-
based service discovery for ad-hoc environments,” in
ACM Mobile Commerce Workshop, September 2002.

[19] D. Doval and D. O’Mahony, “Nom: Resource lo-
cation and discovery for ad hoc mobile networks,”
in Med-hoc-Net 2002, (Sardegna, Italy), September
2002.

[20] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha,
“Gsd: A novel groupbased service discovery protocol
for manets,” in 4th IEEE Conference on Mobile and
Wireless Communications Networks (MWCN 2002),
2002.

[21] C. Perkins, “Ad-hoc on-demand distance vector
routing,” in MILCOM ’97 panel on Ad Hoc Net-
works, 1997.

[22] Q. Z. B. L. Jiangchuan Liu, Kazem Sohraby and
W. Zhu, “Resource discovery in mobile ad hoc net-
works,” in Handbook on Ad Hoc Wireless Networks,
CRC Press, 2002.

[23] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang,
“A two-tier data dissemination model for large-scale
wireless sensor networks,” in MOBICOM’02, (At-
lanta, GA), September 2000.

[24] B. Nath and D. Niculescu, “Routing on a curve,” in
HOTNETS-I, (Princeton, NJ), October 2002.

[25] I. Aydin and C.-C. Shen, “Facilitating match-making
service in ad hoc and sensor networks using pseudo
quorum,” in 11th IEEE International Conference on
Computer Communications and Netwroks (ICCCN),
(Miami, FL), October 2002.

12

