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1 IntroductionMany applications (sequential and parallel) require large amount of time to complete. Such ap-plications can encounter loss of a signi�cant amount of computation if a failure occurs during theexecution. Checkpointing and rollback recovery is a technique used to minimize the loss of compu-tation in an environment subject to failures [1]. A checkpoint is a copy of the application's statestored on a stable storage � a stable storage is not subject to failures. The application periodicallysaves checkpoints; the application recovers from a failure by rolling back to a recent checkpoint.Checkpointing can be used for sequential as well as parallel (or distributed) applications. Whenthe application consists of more than one process, a consistent checkpointing algorithm can beused to save a consistent state of the multi-process application [2, 6, 11].Two metrics can be used to characterize a checkpointing scheme:� Checkpoint overhead: Checkpoint overhead is the increase in the execution time of theapplication because of a checkpoint. We denote checkpoint overhead as C.� Checkpoint latency: Checkpoint latency is the duration of time required to save the check-point. In many implementations, checkpoint latency is larger than the checkpoint overhead.(Section 2 illustrates this with an example.) We denote checkpoint latency as L.In the past, a large number of researchers have analyzed the checkpointing and rollbackrecovery scheme (for instance, to determine the optimal checkpoint interval) [1, 4, 5, 7, 8, 12, 16].This report evaluates the impact of checkpoint latency on the performance of a checkpointingscheme. The contributions of this report are as follows:1. The report evaluates the \average overhead" of a checkpointing scheme, as a function ofcheckpoint latency (L) and checkpoint overhead (C). The overhead of a checkpointing schemeconsists of two components: failure-free overhead due to checkpointing, and recovery overheaddue to rollback.2. A mechanism that attempts to reduce checkpoint overhead C usually causes an increase inthe checkpoint latency L. It can be seen that, an increase in the checkpoint latency L, keepingC constant, results in an increase in the average overhead. Thus, a decrease in checkpointoverhead (C) can result in an increase or a decrease in the average overhead, depending onwhether the latency is increased \too much" or not. This report determines a function g ofcheckpoint overhead C such that checkpoint latency L should be less that g(C) to achieve adecrease in the average overhead.3. For equi-distant checkpoints, the optimal checkpoint interval is shown to be independent ofthe checkpoint latency (L). 1



Related work: Plank et al. [11, 10, 9] present measurements of checkpoint latency and overheadfor a few applications, however, they do not present any performance analysis. We also measuredcheckpoint latency and overhead for a few uni-process applications, and brie
y analyzed the impactof checkpoint latency on performance of \two-level" recovery schemes [14]. This report presentsresults on the impact of checkpoint latency on traditional checkpointing and rollback schemes.This report is organized as follows. Section 2 illustrates the di�erence between checkpointoverhead and latency by means of two checkpointing schemes. Section 3 discusses how to modellatency. Performance analysis is presented in Sections 4 and 5. Section 6 discusses parallel anddistributed applications. The report concludes with Section 7.2 Checkpoint LatencyWe limit the initial discussion and analysis to uni-process applications. We will address multi-process applications in Section 6.For uni-process applications, checkpointing schemes have been proposed that achieve a lowcheckpoint overhead, while resulting in a large checkpoint latency [11, 3, 9]. In this section, weillustrate the distinction between checkpoint latency and checkpoint overhead with two examplesof checkpointing schemes for uni-process applications.Sequential checkpointing is an approach for which checkpoint overhead is identical to check-point latency. In this approach, when an application process wants to take a checkpoint, it pausesand saves its state on the stable storage [10]. The process continues execution only after the stateis completely saved on the stable storage. Therefore, the time required to save the checkpoint (i.e.,checkpoint latency) is practically identical to the increase in the execution time of the process (i.e.,checkpoint overhead). Figure 1 illustrates this approach. The horizontal line represents processorexecution, time increasing from left to right. The shaded box represents the checkpointing opera-tion, the width of the box being equal to latency and overhead of sequential checkpointing. Thesequential checkpointing approach achieves the smallest possible checkpoint latency. However, itresults in a larger checkpoint overhead as compared to other approaches.Forked checkpointing is an approach for which checkpoint overhead is usually much smallerthan the checkpoint latency. In this approach, when a process wants to take a checkpoint, itforks a child process [10]. The state of the child process is identical to that of the parent processwhen fork is performed. After the fork, the parent process continues computation, while thechild process saves its state on the stable storage. Figure 2(a) illustrates this approach. In thisapproach, computation is overlapped with stable storage access (i.e., overlapped with state saving),therefore the checkpoint overhead is smaller than the sequential checkpointing approach. Also, asthe parent and the child execute in parallel, checkpoint latency is larger than the checkpoint2
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overhead. Figure 2(b) illustrates the interleaved execution of the child and parent processes. Asshown in the �gure, useful computation is interleaved with the checkpointing operation.For future reference, note that, a checkpoint is said to have been established if a futurefailure can be tolerated by a rollback to this checkpoint. Thus, a checkpoint is not considered to beestablished until the end of the latency period. When the execution progresses past the end of thecheckpoint latency period, the checkpoint is considered to have been established (refer Figures 1and 2).A checkpoint interval is de�ned as the duration between the establishment of two consecutivecheckpoints. That is, an interval begins when one checkpoint is established, and the interval endswhen the next checkpoint is established. We assume that the checkpoints are equi-distant, i.e.,the amount of useful computation performed during each interval is identical. Let T denote theamount of useful computation performed in each interval.3 A Simple Representation of Latency and OverheadAs discussed in the previous section, the checkpoint latency period is divided into two types ofexecution: (1) useful computation, and (2) execution necessary for checkpointing. The two typesare usually interleaved in time. However, for modeling purposes, we can assume that the two typesof executions are separated in time, as shown in Figure 3. As shown in the �gure, the �rst C unitsof time during the checkpoint latency period is assumed to be used for saving the checkpoint. Theremaining (L � C) units of time is assumed to be spent on useful computation. Although the Cunits of overhead is modeled as being incurred at the beginning of the checkpoint latency period,the checkpoint is considered to have been established only at the end of the checkpoint latencyperiod.Although the above representation of checkpoint latency and overhead is simpli�ed, we nowdemonstrate that it will lead to accurate analysis. Two distinct situations may occur when aninterval is executed.1. A failure does not occur while the interval is executed. In this case, the execution time fromthe beginning to the end of an interval is T +C. Of the T +C units, T units are spent doinguseful computation, while incurring an overhead of C time units. As shown in Figure 4(a),(L�C) units of useful computation is performed during the checkpoint latency period. Nowconsider Figure 4(b). Similar to Figure 4(a), L�C units of useful computation is performedduring the latency period. Also, the execution time for the interval is T + C.2. A failure occurs sometime during the interval. When a failure occurs, the task must be rolledback to the previous checkpoint, incurring an overhead of R time units. In Figure 5(a), the4
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task is rolled back to checkpoint CP1. After the rollback, L�C units of useful computationperformed during the latency period of checkpoint CP1 must be performed again { this isnecessary, because the state saved during checkpoint CP1 is the state at the beginning ofthe latency period for checkpoint CP1. In the absence of a further failure, additional T + Cunits of execution is required before the completion of the interval. Thus, after a failure,R+ (L� C) + (T + C) = R+ T + L units of execution is required before the completion ofthe interval, provided additional failures do not occur.Now consider Figure 5(b). When the failure occurs, as shown in Figure 5(b), the system canbe considered to have rolled back to the end of the \shaded portion" in the latency periodfor checkpoint CP1. (Note that no state change occurs during the \shaded portion".) Nowit is apparent that, in the absence of further failure, R+T +L units of execution is requiredto complete the interval. Thus, our representation of checkpoint latency and overhead yieldsthe same conclusion as the more accurate representation in Figure 5(a).The above discussion is also applicable if the failure occurs during the checkpoint latencyperiod of checkpoint CP2. Such a failure will also require a rollback to checkpoint CP1, ascheckpoint CP2 is not established when the failure occurred.1The above cases imply that the simpli�ed representation of checkpoint latency and overheadwill yield the same results as the accurate representation.4 Evaluating the OverheadNote that the emphasis of this report is on understanding the impact of checkpoint latency onperformance. The emphasis is not on presenting elaborate models for checkpointing schemes, as inmany previous works. Therefore, this report uses a simple model that is adequate for our purpose.(For instance, we assume that C and L are constants for a given scheme. A more elaborate modelmay assume C and L to be some function of time.)The fault model assumed for the analysis is as follows: Processor failures are governed by aPoisson process with rate �. When a processor fails, its local state is corrupted. A processor can1Chandy et al. [1] present an analysis of checkpointing schemes that does not take checkpoint latency intoaccount. However, for sequential checkpointing (with L = C), our analysis is similar to theirs with one exception.An assumption made by Chandy et al. [1] implies that a failure that occurs while checkpoint CP2 (in Figure 5)is being saved, only requires re-initiation of the checkpointing operation. As per their assumption, computationduring the interval preceding checkpoint CP2 need not be performed again even if a failure occurs while checkpointCP2 is being established (i.e. the failure occurs after checkpointing is initiated but before it is completed). Formany environments this assumption is not realistic. Therefore, we make the realistic assumption that a failure thatoccurs while a checkpoint (say, CP2 in Figure 5) is being established requires a rollback to the previous checkpoint(checkpoint CP1 in our example). 6
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established. Before checkpoint CP2 is established, two failures occur, each requiring a rollback tocheckpoint CP1. Subsequently, the computation progresses without failure and checkpoint CP2 isestablished. Interval I2 is completed when checkpoint CP2 is established.
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Figure 6: IntervalsObserve that T units of useful computation is performed during each interval. Provided nofailures occur during the interval, the total time required to execute an interval is T +C. If one ormore failure occurs while executing an interval, then the execution time is longer than T +C. Let� denote the expected (average) execution time of an interval. Then, it is easy to see that,overhead ratio r = limt!1 G(t)t � 1= �T � 1Expected execution time � of a single interval can be evaluated using the 3-state discrete Markovchain [13, 17] presented in Figure 7. State 0 is the initial state, when an interval starts execution.A transition from state 0 to state 1 occurs if the interval is completed without a failure. If a failureoccurs while executing the interval, then a transition is made from state 0 to state 2. After state2 is entered, a transition occurs to state 1 if no further failure occurs before the next checkpoint isestablished. If, however, another failure occurs after entering state 2 and before the next checkpointis established, then a transition is made from state 2 back to state 2. When state 1 is entered, theinterval has completed execution. Therefore, state 1 is a sink state � there are no transitions outof state 1. Figure 6 illustrates the various states for an example execution. As shown in Figure 6,during interval I1, the task is in state 0, and enters state 1 when the interval completes without afailure. During interval I2, the task is initially in state 0, and enters state 2 when a failure occurs.When another failure occurs, the task remains in state 2. Subsequent to the second failure, intervalI2 completes without any further failures. State 1 is entered at the end of the interval.Each transition (X; Y ), from state X to state Y in the Markov chain, has an associatedtransition probability PXY and a cost KXY . Cost KXY of a transition (X; Y ) is the expected(average) time spent in state X before making the transition to state Y .8



0

2

1
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The cost of this transition can be evaluated similar to K02, asK22 = Z R+T+L0 (t) � e��t1� e��(R+T+L)dt = ��1 � (R+ T + L)e��(R+T+L)1� e��(R+T+L)When state 1 is entered, the interval has completed execution. Therefore, there are no transitionsout of state 1.In the above, we have described various transitions in the Markov chain, and derived thetransition probability and cost of each transition. The expected time, �, required to execute oneinterval is the expected cost of a path from state 0 to state 1. It follows that,� = P01K01 + P02�K02 + P221� P22K22 +K21�Substituting the expressions for various costs and transition probabilities, into the above expressionfor �, yields the following:� = e��(T+C)(T + C) +(1� e��(T+C))�"��1 � (T + C)e��(T+C)1� e��(T+C) + 1� e��(R+T+L)e��(R+T+L)  ��1 � (R+ T + L)e��(R+T+L)1� e��(R+T+L) !+ R+ T + L #On simpli�cation, the above expression reduces to the following:� = ��1(1� e��(T+C))e�(R+T+L) = ��1e�(L�C+R)(e�(T+C) � 1) (1)It follows that, the overhead ratio r is given byr = �T � 1 = ��1e�(L�C+R)(e�(T+C) � 1)T � 1 (2)In practice, checkpoint overhead is always non-zero, therefore, we assume C > 0.4.1 Minimizing the Overhead RatioConsider a checkpointing scheme that achieves a certain overhead C and checkpoint latency L.For this checkpointing scheme, the objective now is to choose an appropriate value of T so as to10



minimize the overhead ratio r. The optimal value of T must satisfy the following equation:@r@T = 0 (3)=) @@T "��1e�(L�C+R)(e�(T+C) � 1)T � 1# = 0=) @@T  e�(T+C) � 1T ! = 0=) e�(T+C)(�T � 1) + 1T 2 = 0=) e�(T+C) (1� �T ) = 1 for T 6= 0 (4)As shown in the Appendix, there exists only one positive value of T that satis�es the above equality,and r is minimized at this value of T .As Equation 4 does not include L or R, the optimal value of T is not dependent on L andR { the optimal T , however, depends on C. Thus, to evaluate the optimal checkpoint interval for agiven checkpointing scheme, it is adequate to know the value of C (the value of L is not necessary).However, to evaluate the overhead ratio with the optimal T , L must also be known.5 Inter-Dependence Between L and CCheckpoint latency and checkpoint overhead are dependent on each other. An attempt to reducethe checkpoint overhead typically causes an increase in the checkpoint latency. Figure 8 illustratesa hypothetical example of three approaches for taking a checkpoint, resulting in three possiblecombinations of latency and overhead. Point 1 in the �gure corresponds to sequential checkpointing{ for this, the overhead and latency are identical. Points 2 and 3 correspond to two other approachesthat result in a decrease in the overhead, while increasing the latency. (In general, decrease incheckpoint overhead is not necessarily equal to the increase in latency.) Now, from Equation 2,@r@L = e�(L�C+R)(e�(T+C) � 1)T > 0 (5)Observation 1: Above implies that, as L increases, while C and T are �xed, overhead ratioincreases.For instance, Figure 9(a) plots the overhead ratio as a function of L, for C = R = 10,� = 10�5 and T = 1000. As shown, overhead ratio increases monotonically as L increases. (Note:We do not imply that all the L-C pairs used to plot the graph are achievable. The graph simplydemonstrates the dependence of r on L.) 11
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(b) r versus C: other parameters �xedFigure 9: Dependence of overhead ratio on L and CNow observe that @r@C = e�(L�C+R)T > 0 (6)This implies that, as C increases, while L and T are �xed, the overhead also increases. Conversely:Observation 2: As C decreases, while L and T are �xed, the overhead ratio decreases.For instance, Figure 9(b) plots the overhead ratio as a function of C, for L = R = 10,� = 10�5 and T = 1000. As shown, overhead ratio decreases monotonically as C decreases. Notethe the overhead ratio r is more sensitive to the changes in C, as compared to the changes in L(refer Figure 9). This is also evident from Equations 5 and 6. Observe that@r@L = (e�(T+C) � 1) @r@C :12



Also observe that (e�(T+C) � 1) is likely to be much smaller than 1 for realistic values of �, T andC. Thus, @r@L will typically be much smaller than @r@C { this implies that r is more sensitive to thechanges in C, as compared to changes in L.In practice, if some checkpointing scheme increases L and also results in an increase in C,then one will not use that checkpointing scheme.Observation 3: In practice, an increase in latency L is accompanied by a decrease in C.For sequential checkpointing, checkpoint overhead and latency are identical, say Cmax. Arecovery scheme that attempts to achieve a smaller checkpoint overhead (C) than sequential check-pointing will achieve a latency (L) larger than sequential checkpointing. One would not use sucha scheme, unless it resulted in a lower overhead ratio r as compared to sequential checkpointing.Observations 1 and 2 imply that a recovery scheme that achieves a smaller checkpoint overheadand larger latency, as compared to sequential checkpointing, can achieve a smaller overhead ratiothan sequential checkpointing, provided that the latency is not \too much" larger than sequentialcheckpointing.It is our objective here to determine when the latency is not \too much" larger than se-quential checkpointing. More precisely, the objective is to determine a function g of C such that,for any C < Cmax, the overhead ratio r is smaller than the sequential checkpointing scheme ifL < g(C). Essentially, function g(C) is such that, if L = g(C) then the overhead ratio r is constantindependent of the value of C (speci�cally, r is identical to that of the sequential checkpointingscheme).2Let r(L;C) denote the overhead ratio for a particular value of L and C. r(L;C) is given byEquation 2. For sequential checkpointing, latency and overhead are both Cmax. Therefore, fromthe above discussion, we have r(Cmax; Cmax) = r(g(C); C)That is, the overhead ratio of sequential checkpointing is equal to that of a scheme with checkpointoverhead C and latency g(C). To proceed further, we need to determine which value of T is to beused for the two schemes. It is fair to use that value of T which minimizes overhead ratio r with thegiven checkpoint overhead C. Let Tm denote the optimal value of T for sequential checkpointing,i.e., when C = Cmax. In general, let Tc denote the optimal value of T that minimizes3 the overheadratio for a scheme whose checkpoint overhead is C. (Tc is the solution of Equation 4.) Thus, wewill use T = Tm when evaluating r(Cmax; Cmax) and T = Tc when evaluating r(g(C); C).2In the discussion here, we assume that R is a constant, independent of C. When this assumption is not valid,it is more convenient to replace L + R in Equation 2 by another variable, say Z (Z = L + R), and model Z as afunction f of C, i.e., Z = f(C). Also, in this case, we can consider r to be a function r(Z;C) of Z and C. Analysissimilar to that presented in this section can determine function f(C), similar to function g(C).3Recall that optimal T is not dependent on L. 13



Now, from Equation 2,r(Cmax; Cmax) = ��1e�R(e�(Tm+Cmax) � 1)Tm � 1and r(g(C); C) = ��1e�(g(C)�C+R)(e�(Tc+C) � 1)Tc � 1From the above three equations, it follows that, the right-hand-sides of the above twoequations are equal. That is,��1e�R(e�(Tm+Cmax) � 1)Tm � 1 = ��1e�(g(C)�C+R)(e�(Tc+C) � 1)Tc � 1=) e�g(C) = e�C e�(Tm+Cmax) � 1Tm Tce�(Tc+C) � 1 (7)As Tc is the optimal value of T for checkpoint overhead C, Tc satis�es the equality in Equation 4.From Equation 4 it follows that e�(Tc+C) = 11� �Tc=) Tce�(Tc+C) � 1 = Tc11��Tc � 1=) Tce�(Tc+C) � 1 = 1� �Tc� (8)Similarly, Tme�(Tm+Cmax) � 1 = 1� �Tm� (9)From Equations 7, 8 and 9, we gete�g(C) = e�C �1� �Tm 1� �Tc� = e�C 1� �Tc1� �Tm=) g(C) = C + ��1 ln 1� �Tc1� �Tm (10)Clearly, as one would expect, g(Cmax) = Cmax. (Recall that, when C = Cmax, Tc = Tm.)Having determined g(C), we would like to illustrate the function numerically. In Figure 10,we plot g(C) for � = 10�6 and 10�4. (The values of Tc and Tm necessary for evaluating g(C), canbe obtained by solving Equation 4.4)4It can be veri�ed that, when C is small as compared to 1=�, Tc �p2 � C=�. We used this approximation whenplotting g(C). Young [16] previously obtained this approximate expression for Tc by a somewhat di�erent analysis.14



Consider the g(C) curve for Cmax = 25 in Figure 10(a). The de�nition of g(C) implies that,if a checkpointing scheme achieves overhead and latency corresponding to a point \below" the g(C)curve for Cmax = 25, then this scheme achieves a smaller overhead ratio than the correspondingsequential checkpointing scheme (with checkpoint overhead 25). For instance, if some schemereduces C from 25 to 10, then it can achieve a smaller overhead ratio r than the sequentialcheckpointing scheme, even if it increases the latency from 25 to as large as 2000.Comparison of Figures 10(a) and 10(b) indicates that, for the same Cmax, as � increases,g(C) decreases. This is intuitive, because with larger �, it is necessary to keep checkpoint latencysmaller (to avoid an increase in the overhead ratio).The \measured L" curve in Figure 11 plots checkpoint overhead and latency measured fora merge sort program using four di�erent checkpointing schemes { the data is borrowed from Liet al. [9]. One of the four schemes is sequential checkpointing with overhead Cmax = 31 seconds.For comparison, Figure 11 also plots g(C) for three di�erent values of �. (Note that the verticalaxis in Figure 11 is a log scale { the vertical axes in all other graphs are linear.) Observe that,even when � is as large as 10�4 per second, the measured checkpoint latency is well below the g(C)curve. This indicates that, the checkpointing techniques used in practice can achieve a signi�cantlysmaller overhead ratio as compared to the sequential checkpointing scheme.The g(C) curve derived above can be used to determine when a checkpointing scheme willperform better than the sequential checkpointing scheme.6 Multi-process ApplicationsThe above discussion considered a uni-process application. When an application consists of mul-tiple processes in a distributed environment, we assume that that application periodically takesconsistent checkpoints [2, 11, 15]. A consistent checkpoint consists of one checkpoint per process,and possibly a few messages logged on the stable storage. Because the system is distributed, it ispossible that di�erent processes checkpoint their state at di�erent times { also, it is possible thatdi�erent processes complete the consistent checkpointing algorithm at di�erent times. In otherwords, in such a system, di�erent processes may have di�erent overhead and latency. Figure 12illustrates an application that uses the Chandy-Lamport algorithm [2] for consistent checkpointing.(The \marker" messages used by the algorithm are not shown in the �gure.)As shown in the �gure, let us assume that the application consists of three processes P1, P2and P3 that are located on three processors in a distributed system. To establish a \consistent"checkpoint of the distributed application, each process records its own state on the stable storage.Each process may use any approach to record the state { here, we assume that each process uses15
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timeFigure 12: Di�erent processes may have di�erent overhead and latencythe sequential checkpointing approach. The states recorded by the processes form a \consistentrecovery line". Any messages that cross the recovery line are also logged (in stable storage) bytheir corresponding receiver processes. In our example, processes P1 and P3 log messages m1 andm2, respectively, in the stable storage. Process P2 does not need to log any messages, because itdoes not receive any message that crosses the recovery line. When a process has recorded its stateand logged messages (if necessary), its participation in the consistent checkpointing algorithm hascompleted. As shown in the �gure, di�erent processes may complete the algorithm at di�erenttimes (depending on message arrival delays, and on size of each process state). Therefore, di�erentprocesses observe di�erent checkpoint latencies { latencies L1, L2 and L3 are experienced byprocesses P1, P2 and P3 in our example. The overheads experienced by the three processes canalso be di�erent, depending on the size of their state, and the size of messages they have to saveduring the consistent checkpointing algorithm.In spite of the variations in overhead and latency encountered by di�erent processes, wesuggest that our analysis in the previous section can be applied to multi-process applications toestimate the overhead ratio. There are two possibilities:� To obtain a pessimistic estimate of the overhead ratio (i.e. an upper bound), the values ofparameters, such as latency L, used in the analysis can be obtained as the maximum overall processes. For instance, in our example, we will choose L = L1.� To obtain a more accurate estimate of the overhead ratio, the values of parameters can beobtained as the average over all processes.Just as there are di�erent approaches for checkpointing uni-process applications, there aredi�erent schemes for consistent checkpointing of multi-process applications [2, 3, 6, 11, 15], that17



achieve di�erent overhead and latency. The analysis presented in the previous section can be usedto determine which approach for consistent checkpointing is superior.7 ConclusionsThis report evaluates an expression for the overhead ratio of a checkpointing scheme, as a functionof checkpoint latency (L) and checkpoint overhead (C). Our analysis shows that, for an equi-distant checkpointing strategy, the optimal checkpoint interval is not dependent on the value of L{ though it depends on the value of C. It is also observed that the overhead ratio is much moresensitive to the changes in C, as compared to changes in L.In practice, a mechanism that attempts to reduce checkpoint overhead usually causes anincrease in the checkpoint latency. A decrease in checkpoint overhead C, keeping L constant, resultsin a decrease in the overhead ratio. Similarly, increasing checkpoint latency L, keeping C constant,results in increase in overhead ratio. A decrease in C can result in an increase or a decrease inthe overhead ratio, depending on whether the latency is increased \too much" or not. This reportdetermines a function g of checkpoint overhead C such that checkpoint latency L should be lessthat g(C) to achieve a decrease in the average overhead.The report presents an example to illustrate that in distributed systems di�erent processesare likely to encounter di�erent checkpoint latencies. However, the analysis presented in the reportcan be used to obtain an approximate estimate of performance overhead of distributed consistentcheckpointing schemes.AppendixThe analysis presented below is similar to [1].Consider the overhead ratio r as a function of T . To determine the maxima and minima ofr, we must solve the equation @r@T = 0:Now, from Equation 2, @r@T = 0=) @@T "��1e�(L�C+R)(e�(T+C) � 1)T � 1# = 0=) @@T "e�(T+C) � 1T # = 018



=) e�(T+C)(�T � 1) + 1T 2 = 0=) e�(T+C)(1� �T ) = 1 for T 6= 0 (11)Thus, the positive values of T where r is minimized or maximized must satisfy the above equation.(Note: T = 0 is not of interest.)Let us evaluate @2r@T 2 at the extremas. From Equation 2,@2r@T 2 = ��1e�(L�C+R) 24 (e�(T+C) � 1)� 2T 3 � 2�e�(T+C)T 2 + �2e�(T+C)T 35= ��1e�(L�C+R) (1� �T )2e�(T+C) + e�(T+C) � 2T 3We want to evaluate @2r@T 2 at those (positive) T that maximize or minimize r. Such values of T mustsatisfy Equation 11. Multiplying both sides of Equation 11 by (1��T ), we have (1��T )2e�(T+C) =(1� �T ). Substituting this into the above equation, we get@2r@T 2 = ��1e�(L�C+R) (1� �T ) + e�(T+C) � 2T 3= ��1e�(L�C+R) e�(T+C) � 1� �TT 3Now,5 e�(T+C) � 1 � �T > 0 for T > 0 and C > 0. (Note: In practice, C > 0.) Therefore, forpositive T that satisfy Equation 11, @2r@T 2 > 0. Therefore, function r has only minimas (for T > 0).As r is not a constant function of T , if it has no maxima (at T > 0), it cannot have more thanone minima at a positive T . Therefore, r has only one minimum (for T > 0) { the minimum isachieved at T obtained as the solution of Equation 11.References[1] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig, \Analytic models for rollbackand recovery strategies in data base systems," IEEE Trans. Softw. Eng., vol. 1, pp. 100{110,March 1975.[2] K. M. Chandy and L. Lamport, \Distributed snapshots: Determining global states in dis-tributed systems," ACM Trans. Comp. Syst., vol. 3, pp. 63{75, February 1985.5e�(T+C) = 1 + �(T +C) + �2(T +C)2=2 + � � �. 19
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