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Abstract

A “consistent checkpointing” algorithm saves a consistent view of the distributed
system state on stable storage. The loss of computation upon a failure can be bounded
by taking consistent checkpoints with adequate frequency.

The traditional consistent checkpointing algorithms require the different processes
to save their state at about the same time. This causes contention for the stable
storage, potentially resulting in large overheads. Staggering the checkpoints taken
by various processes can reduce the overhead. Some techniques for staggering the
checkpoints have been proposed previously [9], however, these techniques result in
“limited staggering” in that not all processes’ checkpoints can be staggered. Ideally,
one would like to stagger the checkpoints arbitrarily.

This report presents a simple approach to arbitrarily stagger the checkpoints. Our
approach requires that the processes take consistent logical checkpoints, as compared to
consistent physical checkpoints enforced by existing algorithms. This report discusses
the proposed approach and the implementation issues. The proposed approach was
discussed briefly in [11].

*Section 5 (Related Work) revised October 1994.



1 Introduction

Applications executed on a large number of processors, either in a distributed environment,
or on multicomputers such as nCube, are subject to processor failures. Unless some recovery
techniques are utilized, a processor failure will require a restart of the application, resulting

in significant loss of performance.

Consistent checkpointing is a commonly used technique to prevent complete loss of
computation upon a failure [1, 3, 7,9, 12]. A “consistent checkpointing” algorithm saves a
consistent view of the distributed system state on a stable storage. The loss of computation

upon a failure is bounded by taking consistent checkpoints with adequate frequency.

The traditional consistent checkpointing algorithms require the different processes to
save their state at about the same time. This causes contention for the stable storage, poten-
tially resulting in significant performance degradation [9]. Staggering the checkpoints taken
by various processes can reduce the overhead of consistent checkpointing. Some techniques
for staggering the checkpoints have been previously proposed [9], however, these techniques
result in “limited staggering” in that not all processes’ checkpoints can be staggered. Ideally,
one would like to stagger the checkpoints arbitrarily. We assume that a processor does not

have enough memory to make an “in-memory” copy of entire process state.

This report presents a simple approach to “completely stagger” the checkpoints. Our
approach requires that the processes take consistent logical checkpoints, as compared to
consistent physical checkpoints enforced by existing algorithms. This report discusses the

proposed approach and the implementation issues. (These were discussed briefly in [11].)

The report is organized as follows. Section 2 discusses the notion of a logical check-
point. Section 3 presents a consistent checkpointing algorithm proposed by Chandy and
Lamport [1]. Section 4 presents the basic principle behind the proposed approach; imple-
mentation issues are discussed in Section 6. Our approach is closely related to [1, 5,9, 13],

as discussed in Section 5. Section 7 concludes the report.



2 A Logical Checkpoint

A process is said to be deterministic if its state depends only on its initial state and the
messages delivered to it [10]. A deterministic process can take two types of checkpoints:
a physical checkpoint or a logical checkpoint. A process is said to have taken a physical
checkpoint at some time #1, if the process state at time ¢; is saved on the stable storage. A
process is said to have taken a logical checkpoint at time ¢y, if enough information is saved

on the stable storage to allow the process state at time ¢; to be recovered.

To the best of our knowledge, the term logical checkpoint was first introduced by
Wang et al. [13, 14], who also presented one approach for taking a logical checkpoint. Now
we present three approaches for taking a logical checkpoint at time ¢;. Although the three
approaches are equivalent, each approach may be more attractive for some applications than

the other approaches. Not all approaches will be feasible on all systems.

e One approach for establishing a logical checkpoint at time ¢; is to take a physical
checkpoint at some time ¢y < t; and log (on stable storage) all messages delivered to
the process between time tq and ;. (For each message, the message log contains the
receive sequence number for the message as well as the entire message.) This approach

is essentially identical to that presented by Wang et al. [13].

Figure 1 presents an example wherein process P takes a physical checkpoint at time .
Messages M1, M2 and M3 are delivered to process P by time #;. To establish a logical
checkpoint of process P at time ¢, messages M1, M2 and M3 are logged on the stable
storage. As process P is deterministic, the state of process P can be recovered using

the information on the stable storage (i.e., physical checkpoint at ¢y and messages M1,

M2 and M3).

We summarize this approach as:

physical checkpoint + message log = logical checkpoint

e The essential purpose behind saving the messages above is to be able to recreate the

the state at time 1, or to be able to “re-perform” the incremental changes made in
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Figure 1: Physical checkpoint + message log = logical checkpoint

process state by each of these messages. This may be achieved simply by taking a

physical checkpoint at time ¢y and taking an incremental checkpoint at time ¢;. The
incremental checkpoint is taken by logging! the changes made to process state between

time 4o and ;. * We summarize this approach as:

physical checkpoint + incremental checkpoint = logical checkpoint

e The above two approaches take a physical checkpoint priorto the desired logical check-
point, followed by logging of additional information (either messages or incremental

state change).

The third approach is the converse of the above two approaches. Here, the physical
checkpoint is taken at a time ¢35, where ¢ > ¢;. In addition, enough information is
saved to un-do the effect of messages received between time ¢; and ¢,. For each relevant
message (whose effect must be undone), an anti-message is saved on the stable storage.
The notion of an anti-message here is similar to that used in time warp mechanism [4]
(although the implementations could be very different) or that of UNDO records [2]
in database systems. Anti-message M* corresponding to a message M can be used to

undo the state change caused by message M.

Figure 2 illustrate this approach. A logical checkpoint of process P is to be established
at time #1. Process P delivers messages M4 and M5 between time t; and t,. A physical
checkpoint is taken at time ¢y, and anti-messages corresponding to messages M4 and

M5 are logged on the stable storage. The anti-messages are named M4* and Mb5*,

!The term logging is used to mean “saving on the stable storage”.

It is possible to take the so-called physical checkpoint also as the incremental change in the process
state since the last physical checkpoint of the process was taken. As the interval between two consecutive
physical checkpoints is likely to be large, this incremental change 1s likely to be large. On the other hand,
the interval ¢y — ¢; will be relatively small, potentially reducing the state affected during that interval.
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Figure 2: Anti-message log + physical checkpoint = logical checkpoint
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Figure 3: Recovering a logical checkpoint using anti-messages

respectively.

To recover the state, say S1, of process P at time #;, the process is initialized to the
physical checkpoint taken at time ¢, and then anti-messages M5* and M4* are sent to
the process. The order in which the anti-messages are delivered is reverse the order in
which the messages were delivered. As shown in Figure 3, the final state of process P

is identical to the state (or logical checkpoint) at time #;.
We summarize this approach as:
anti-message log 4+  physical checkpoint = logical checkpoint

An important issue is that of forming the “anti-messages”. The anti-messages can
possibly be formed by the application itself, or they may consist of a copy of the
(old) process state modified by the message. We have, as yet, not experimented with

anti-messages. Therefore, practicality of this idea is open to debate.

Note that a physical checkpoint is trivially a logical checkpoint, however, the converse



is not true.

3 Chandy-Lamport Algorithm [1]

Chandy and Lamport [1] presented an algorithm for taking a consistent checkpoint of a
distributed system. Although the proposed approach can potentially be used with any
consistent checkpointing algorithm, for brevity, we limit our discussion to the Chandy-

Lamport algorithm.

Assume that the processes communicate with each other using unidirectional com-
munication channels; a bidirectional channel can be modeled as two unidirectional channels.
The communication graph is assumed to be strongly connected. The algorithm presented
next is essentially identical to Chandy-Lamport [1] and assumes that a certain process is

designated as the coordinator. This algorithm is also presented in [9].

Algorithm: The coordinator process, say P, initiates the consistent checkpointing algo-
rithm by sending marker messages on each channel, incident on, and directed away from P

and immediately takes a checkpoint.

A process, say (), on receiving a marker message along a channel ¢ takes the following

steps:

if Q has not taken a checkpoint then

begin
Q sends a marker on each channel, incident on, and directed away from Q
Q takes a checkpoint
Q) records the state of channel ¢ as being empty

end

else () records the state of channel ¢ as the sequence of messages received along ¢

after ) had taken a checkpoint and before () received the marker along c.



4 Consistent Logical Checkpointing

The proposed algorithm can be summarized as follows:
staggered physical checkpoints + consistent message logging = consistent logical checkpoints

The basic idea is to coordinate logical checkpoints rather than physical checkpoints.
In this section, we assume that the first approach, described in Section 2, for taking logical
checkpoints is being used. Thus, a logical checkpoint is taken by logging all the messages

delivered to a process since its most recent physical checkpoint.

Algorithm

1. Physical checkpointing phase: A checkpoint coordinator sends a take_checkpoint mes-
sage to each process. Each process, sometime after receiving this message, takes a
physical checkpoint and sends an acknowledgement to the coordinator. The check-
points taken by the processes are staggered by allowing an appropriate number® of
processes to take checkpoints at any time (this can be done using any [-mutual ex-
clusion algorithm). The checkpoints taken by the processes need not be consistent.
The processes take checkpoints as soon as possible after receiving the take_checkpoint

message (subject to the staggering constraint).

After a process takes the checkpoint, it can continue execution. A process stores each
message delivered to it, after its physical checkpoint, into a volatile buffer. Over-
flows in this buffer are spilled into the stable storage. (Alternatively, the process may

asynchronously log these messages to the stable storage even if the buffer is not full.)

Number of messages required in this phase can be reduced, as discussed in Section 6.

2. Consistent message logging phase: When the coordinator receives acknowledgement
messages from all the processes indicating that they have taken a physical checkpoint,
the coordinator initiates the consistent message logging phase, essentially, by initiating
the Chandy-Lamport algorithm [1]. The only difference is that when the original algo-

rithm requires a process to take a “checkpoint”, the process takes a logical checkpoint

3For instance, the number of processes allowed to checkpoint simultaneously may be equal to the number

of disks.



by logging the messages delivered since the physical checkpoint taken in the previ-
ous phase. As required by the Chandy-Lamport algorithm, messages representing the

channel states at the time the consistent checkpoint is taken are also logged.

When the Chandy-Lamport algorithm is complete, the processes can discontinue log-
ging received messages (specifically, when a process has logged the state of a channel

¢, it need not log further messages received on channel ¢).

This algorithm establishes a consistent recovery line consisting of one logical checkpoint per

process.

The above algorithm reduces the contention for the stable storage by completely
staggering the physical checkpoints. However, contention is now introduced in the second
phase of the algorithm when the processes coordinate message logging. This contention
can be reduced by using the limited staggering techniques proposed in [9]. Our scheme

will perform well if message volume is relatively small compared to checkpoint sizes. A few

variations to the above algorithm are possible, as discussed in Section 6

Figure 4 illustrates the algorithm assuming that the system consists of three processes,
and that at most one process can write to the stable storage at any time. Process P acts
as the coordinator and initiates the checkpointing phase by sending the take_checkpoint
messages. Processes P, ) and R take staggered checkpoints. When process P receives
acknowledgements from processes () and R, it initiates the consistent message logging phase
consisting essentially of an execution of the Chandy-Lamport algorithm. Process P sends
marker messages to () and R and then takes a logical checkpoint by logging messages MO0
and M2 to the stable storage. When process () receives the marker message from process P,
it sends markers to P and R and then takes a logical checkpoint by logging message M1 to
the stable storage. Similarly, process R takes a logical checkpoint by logging message M3 to
the stable storage. Messages M4 and M5 are logged by the Chandy-Lamport algorithm as

the state of the channels at the time the consistent (logical) checkpoints were taken.

Recovery: After a failure, each process rolls back to its recent physical checkpoint and
re-executes (using the logged messages) to restore the process state to the logical checkpoint

that is a part of the most recent consistent recovery line.
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Figure 4: An example

5 Relation to Existing Work

The algorithm presented above is closely related to [1, 5, 8, 9, 13]. Our algorithm is designed
to bound the rollback distance, similar to the traditional coordinated checkpointing algo-
rithms. It may be noted that, after a failure, a process rolls back to a physical checkpoint
and then executes to restore a logical checkpoint. Thus, the overhead of recovery (or rollback

distance) is determined by when physical checkpoints are taken.

Wang et al. [13, 14] introduced the notion of a logical checkpoint. They determine
a recovery line consisting of consistent logical checkpoints, after a failure occurs. This
recovery line is used to recover from the failure. Their goal is to determine the “latest”
consistent recovery line using the information saved on the stable storage. During failure-
free operation each process is allowed to independently take checkpoints and log messages.
On the other hand, our scheme coordinates logical checkpoints before a failure occurs. These
logical checkpoints are used to recover from a future failure. One consequence of this is that

we do not need to log all messages, only those message are logged which make the logical



checkpoints consistent.

Plank [9] presents two coordinated checkpointing algorithms (one similar to Chandy-
Lamport [1]) that attempt to stagger the checkpoints. However, it is possible that some
checkpoints taken by these algorithms cannot be staggered. The degree of staggering is
affected by the timing of application message delivery. In contrast, our algorithm allows

arbitrary staggering of the physical checkpoints.

Long et al. [8] discuss an evolutionary checkpointing approach that is similar to
consistent logical checkpointing. The fundamental difference between the two approaches is
that our approach staggers the physical checkpoints, while the scheme in [8] does not allow
staggering. By enforcing staggering, our approach is expected to perform much better than
[8]. Long et al. also assume synchronized communication, no such assumption is made in

the proposed approach.

Johnson [5] presents an algorithm that forces the processes to log message on the
stable storage or to take a physical checkpoint. The goal of his algorithm is to make the
state of a single process committable (primarily, to allow it to commit an output). Also,
his algorithm does not control the time at which each process takes the checkpoint. Our
algorithm is designed to bound the rollback distance (and not for output commits) and
it makes recent states of all processes committable. The same result can be achieved by
executing Johnson’s algorithm simultaneously for all processes. The implementation will
not bound the rollback distance, however, as the timing of the physical checkpoints is not
controlled by his algorithm. Additionally, Johnson’s algorithm can result in all messages
being logged (as processes may choose to log messages asynchronously), our algorithm logs

messages only until the consistent message logging phase is completed.

6 Implementation Issues
Many variations of the algorithm presented earlier are possible. Utility of these variations

depends on the nature of the application and the execution environment. In the following,

we discuss some of the implementation issues.

10



Checkpointing versus message logging:

o If a process receives too many messages after taking the physical checkpoint in the first
phase of the algorithm, then it may decide to take a physical checkpoint in the second
phase (rather than logging messages). This makes the physical checkpoint taken by
the process in the first phase redundant. However, this modification may reduce the

overhead when checkpoint size is smaller than what the message log would be.

e A process may decide to not take the physical checkpoint in the first phase, if it a

priori knows that its message log will be large. In this case, the process would take a

physical checkpoint in the second phase.*

e The coordinator may initiate the consistent message logging phase even before all
processes have taken the physical checkpoint. In this case, consider a process () that
receives a marker message before QQ has taken the physical checkpoint (in the first
phase). Then, process 3 can take a physical checkpoint in the second phase rather
than logging messages to establish a logical checkpoint (essentially, process P can

pretend that it decided to not take a physical checkpoint in the first phase).?

If the coordinator initiates consistent message logging phase early, then it can cause

increase in stable storage contention as some checkpoints may not be staggered any-

more.

Staggering in the consistent message logging phase: During the consistent message
logging phase, the processes will save their message logs to the stable storage at about the
same time. To minimize stable storage contention during this phase, the technique presented
by Plank [9] can be used. Essentially, Plank’s method (as applied to our algorithm) would
suggest that the processes should delay the sending of a marker message until after the
process has itself established a logical checkpoint. (As pointed out earlier, this results in a

limited amount of staggering.) We suggest another approach for limited staggering. This

4Johnson [5] suggested a scheme where each process uses a similar heuristic to decide whether to log

messages or not.
SRecollect that a physical checkpoint is also trivially a logical checkpoint. So the process here is actually
taking a logical checkpoint, but not by logging messages.

11
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Figure 5: Delaying the delivery of the marker messages

approach delays the receipt of a marker message, unlike the delayed sending of the marker

messages suggested by Plank.

The Chandy-Lamport algorithm requires that a process take a checkpoint (if it has
not already done so) when it receives a marker message on any channel. It is possible to
introduce some staggering by delaying the delivery of the marker message. Delivery of a
marker message can be delayed until a message subsequent to the marker message (on the
same channel) needs to be delivered. Figure 5 illustrates this. As shown in this figure,
process R can delay taking logical checkpoint even though it has received markers from
both P and Q. The logical checkpoint of process P can be delayed until message M6 from
process P needs to be delivered to process R. As the marker precedes message M6, delivery

of the marker cannot be delayed any further.

Another related point is that, in our algorithm, messages are logged either because
they are needed to establish a logical checkpoint or because they represent the channel state

at the time the consistent logical checkpoints are taken. It is possible to log these two types

12



of messages together (rather than separately, as implied by the algorithm description in

Section 4).

Number of messages required in the physical checkpointing phase: The de-
scription of the algorithm in Section 4 implies that, for N processes, 2(N — 1) messages
(take_checkpoint and acknowledgement) are required in this phase, possibly in addition to
the messages required to ensure staggered checkpointing (mutual exclusion). However, the
number of messages can be reduced significantly as illustrated with an example in Figure 6.
Assume that there are three processes and at most one can write to the stable storage at any
time. The processes can form a “cycle”, position in the cycle determining when a process
takes the physical checkpoint. As shown in the figure, process P takes a physical checkpoint,
and sends a take_checkpoint message to process Q (but to no other process). On receiving
this message, process () takes a physical checkpoint, and then sends a take_checkpoint mes-
sage to R. On receiving the take_checkpoint message, process R takes a physical checkpoint,
and then sends an acknowledgement message to process P. Receipt of this acknowledgment
suffices to guarantee that all processes have taken a physical checkpoint. Also, the cyclic
arrangement ensures that only one process takes a physical checkpoint at any time. This
approach can be easily modified when multiple processes can write to the stable storage

simultaneously (e.g., form multiple cycles).

Approach for taking a logical checkpoint: The discussion so far assumed that a
logical checkpoint is taken by taking a physical checkpoint and logging subsequently received
messages. [t is easy to see that the proposed algorithm can be modified to allow a process
to use any of the three approaches presented earlier (in Section 2) for establishing a logical
checkpoint. In fact, different processes may simultaneously use different approaches for
establishing a logical checkpoint. Details of the modified algorithm will be presented in a

future revision of this report.

Synchronizing pair of processes: Plank [9] suggests that staggered checkpoints can

increase the overhead, if the application does a lot of synchronization. While we agree

13
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with this suggestion as such, it may be possible to overcome the problem is some systems.
Figure 7 (based on an example in [9]) illustrates two processes (P and Q) that communicate
as follows: Whenever one process sends a message to the other, the other acknowledges with
another message. The first process stalls until the acknowledgement is received. During
normal operation, the synchronization operation does not introduce any (significant) stalls.
When the checkpoints are staggered, however, the first process may have to wait for the
second process to complete a checkpoint before the acknowledgement will be sent. With

non-staggered checkpoints, the duration of the wait could be much smaller.

A solution to this problem may be to allow a process to deliver (and respond to)
an “urgent” message even when it is taking a physical checkpoint. However, delivery of
the message may modify the state that is being checkpointed. Therefore, the checkpointing
procedure should include these modifications (incremental change) in the final checkpoint.
Figure 8 illustrates this. In this case, the physical checkpoint stored on the stable storage

will reflect the state of process P after message M was delivered.

14
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7 Summary

This report presents an algorithm for taking consistent logical checkpoints. The proposed
approach ensures that the physical checkpoints taken by various processes are completely
staggered to minimize the contention in accessing the stable storage. The report also suggests
a number of variations of the proposed approach. Performance evaluation of the proposed
algorithm is a subject of future work [6]. The experimental results will be made available in

a future revision of this report.
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