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Abstract

Achieving traditional Byzantine agreement in the presence of arbitrary faults re-
quires that the total number of nodes be larger than three times the number of faulty
nodes. Two approaches have been proposed in the literature to circumvent this re-
quirement: (i) hybrid fault model approach [4, 7] considers three types of faults of
varying degree of severity, and (ii) degradable agreement approach [10, 11] relaxes the
definition of agreement in the presence of excessive faults. This report combines the
above two approaches and presents a degradable agreement algorithm for the hybrid
fault model.

The report defines and evaluates reliability and safety measures for the proposed
degradable agreement algorithm and concludes that degradable agreement can be used
to trade reliability with safety. It is shown that the hybrid fault model results in
better algorithms (with respect to reliability and/or safety) only when the probability
of arbitrary faults is not very small.



1 Introduction

Consider a system consisting of a sender that wants to send a value to certain receivers.
Various agreement algorithms have been proposed for this purpose (e.g [1, 2, 3]). that
tolerate arbitrary (possibly malicious) failures. The requirement is typically that the fault-
free receivers must all agree on the same value [2, 3]. Dolev [1] analyzes a weaker form of
agreement. Prior work has shown that such agreements are impossible if a third of the nodes
(or more) are faulty. In other words, the number of nodes in the system must be larger than
three times the number of faulty nodes. Two very different approaches have been presented
to circumvent this requirement. These approaches either weaken the fault model or weaken

the definition of agreement.

e Various researchers [4, 5, 7] have presented agreement protocols that tolerate a mix
of Byzantine failures and other less severe types of failures. As all the faults in the
system are not necessarily Byzantine, these protocols are often able to tolerate more
than a third of the nodes being faulty. We will use the hybrid fault model [4] that

divides faults into three classes: arbitrary, symmetric and manifest (elaborated later).

o We recently presented the degradable agreement [11] approach for Byzantine faults.
The degradable agreement protocol achieves traditional Byzantine agreement' [3] (here-
after referred to as Lamport’s Byzantine agreement) up to a certain number of Byzan-
tine faults and a degraded form of agreement with a higher number of faults. The
degraded form of agreement allows the fault-free receivers to agree on at most two
different values, one of which is necessarily the default value.? Note that Lamport’s
agreement requires all nodes to agree on an identical value. By weakening the defini-
tion of agreement when excessive faults exist, our approach can tolerate more than a

third of the nodes being faulty.

L Although Byzantine agreement was defined by Lamport, Shostak and Pease [3], for brevity we refer to
it as Lamport’s Byzantine agreement.
?Default value, denoted Vj, is distinguishable from all other values.



This report presents an agreement protocol that combines the above two approaches.
Specifically, we present a degradable agreement algorithm for the hybrid fault model pre-
sented in [4]. Also, we define safety and reliability measures and show that the proposed
algorithm effectively trades reliability with safety. This report is organized as follows. Sec-
tion 2 presents the hybrid fault model and Section 3 defines degradable agreement. An
algorithm for achieving degradable agreement with hybrid fault model is presented in Sec-
tion 4. Section 5 evaluates reliability and safety measures for the proposed algorithm, and
also shows that the hybrid fault model is useful only when arbitrary faults occur with non-

negligible probability. Conclusions are presented in Section 6.

2 Hybrid Fault Model

In the hybrid fault model [4, 7], the faults are divided into three classes (in order of increasing
severity): manifest faults, symmetric faults and arbitrary faults. A manifest fault is one
that produces detectably missing values or values that can be detected as bad by all non-
faulty recipients [4]. Both symmetric and arbitrary faults can produce values that are
not detectably bad. However, a symmetric fault delivers identical value to all recipients,
whereas, an arbitrary fault behavior is unconstrained (e.g. may deliver different wrong

values to different recipients). Thus, an arbitrary fault is equivalent to a Byzantine fault [3].

A value sent by a manifest-faulty node can always be detected to be erroneous by the
recipient. Therefore, it is assumed that a manifest-faulty node always sends a value denoted
by E; F is a value distinguishable from all other values including default value Vj;. Default

value Vjy is also distinguishable from all other relevant values.
We use the following notation:
N = number of nodes in the system under consideration.
a = number of arbitrary-faulty nodes in the system.

s = number of symmetric-faulty nodes in the system.



¢ = number of manifest-faulty nodes in the system.

Note that symmetric fault is a restricted type of an arbitrary fault. This leads to
the question of how to count the number of arbitrary and symmetric faults. For example
consider a system containing 2 arbitrary-faulty and 3 symmetric-faulty nodes. It is clear
that, for this case, we can count ¢ = 2 and s = 3. As a symmetric-fault is less severe
than an arbitrary-fault, in this case, an algorithm that can tolerate 3 arbitrary-faults and
2 symmetric-faults can tolerate the present fault situation. Therefore, for the purpose of
analysis, one may classify one of the symmetric-faulty nodes as arbitrary-faulty, and assume
a =3 and s = 2 (even though in reality, « = 2 and s = 3). It turns out that this counter-
intuitive classification is useful in accurately evaluating reliability and safety of the proposed
approach. We will return to this subject in Section 5. Although a manifest-faulty node may
also be classified as symmetric-faulty or arbitrary-faulty, our analysis does not gain from

this.

The algorithm presented in this report achieves degradable agreement in the presence
of a arbitrary-faults, s symmetric-faults and ¢ manifest-faults, provided certain conditions
are satisfied. The next section elaborates on these conditions as well as the definition of

degradable agreement.

3 Degradable Agreement with Hybrid Fault Model

The system model can be described as follows. The system consists of a sender and some
receivers. The sender wants to send its value to the receivers. The term “sender’s value”

means

e the value the sender wants to inform every receiver, when the sender is fault-free,
e the value the sender sends to every receiver, when the sender is symmetric-faulty, and

e value F, when the sender is manifest-faulty.



In the following, the term node may refer to the sender or a receiver. As noted earlier, V;

denotes the default value, which is distinguishable from all other relevant values.

Degradable Agreement with Hybrid Faults: The degradable agreement algorithm
presented in this report satisfies the following two conditions. Note that the algorithm
presented by Lincoln and Rushby [4] only satisfies a condition similar to first of the two

conditions.

o if N>2(a+s)+c+uand a <m,then D.1 and D.2 stated below are satisfied.

o if N >a+2m+2s+ cand a < u, then D.3 and D.4 stated below are satisfied.

(D.1) If the sender is not arbitrary-faulty, then all the fault-free receivers must agree on the

sender’s value.

(D.2) If the sender is arbitrary-faulty, then the fault-free receivers must agree on an identical

value.

(D.3) If the sender is not arbitrary-faulty, then the fault-free receivers may be partitioned
into at most two classes. The fault-free receivers in one class must agree on the sender’s

value, and the fault-free receivers in the other class must all agree on the default value.

(D.4) If the sender is arbitrary-faulty, then the fault-free receivers may be partitioned into
at most two classes. The fault-free receivers in one class must agree on the default
value, and the fault-free receivers in the other class must all agree on an identical

value.

Conditions D.1 and D.2 are identical to those satisfied by Lamport’s Byzantine agree-
ment [3]. Conditions D.3 and D.4 define degraded agreement. Observe that conditions D.3
and D.4 are strictly weaker than D.1 and D.2, respectively, i.e., satisfying D.1 (D.2) is
sufficient to satisfy D.3 (D.4) but not vice-versa.

Note that when m = wu, condition 1 above is equivalent to that satisfied by the
algorithm in [7, 4]. Also, when only arbitrary failures occur, our algorithm achieves m /u-

degradable agreement, as defined in [11].



Definition 1 A system is said to be a conforming system, if at least one of the following

conditions hold, where m < u:
I.a<mand N >2(a+ s)+ c+u, and

2. a<wuand N >a-+2m+2s+c.

4 An Algorithm for Degradable Agreement

We begin with definition of a special voting function to be used in our algorithm.

Definition 2 o-HVOTE (or o-hybrid vote) of v quantities wy, wy, -+, w, is a (where
a # Vg and a # E) if k quantities are a such that k > v — k — ¢* + o, where c* is the
number of quantities that are equal to E. If no such « exists, then o-hybrid vote is defined

to be the default value Vy.

For example, consider eight values a,~, 5, a, v, E,v,v. I-HVOTE of these eight values is ~,
whereas 2-HOTE is V. Similarly, I-HVOTE of o, K, E, E, E. «, 3,3 is V;. The following
observations can be made from the definition of HVOTE.

1. HVOTE cannot equal E.

2. Provided o > 1, if o-HVOTE of some v values is a # Vj, then majority vote of the

non- K values among these v values is also . The converse is not always true, however.

3. Provided o > 1, the condition k > v — k — ¢* + ¢ cannot hold true simultaneously for
two different values, say o and 3, such that o # V;, E and g # Vy, E. A consequence
of this observation is that, if the condition k& > v — k — #* 4 o is true for some value

v (# Vg, E') then we can be certain that HVOTE is equal to ~.

The algorithm presented here uses two functions R and UnR, called the wrapper and
unwrapper functions, respectively [4]. Function R and UnR are defined such that (i) for all
a # Vi, we have R(a) # F and R(a) # Vg, (i) R(Vy) = Vy and (iii) UnR(R(«)) = « for all
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a. Lincoln and Rushby [4] suggest a simple implementation of R and UnR using bounded

integers.? A similar implementation can be used here.

Algorithm HBYZ presented below may be viewed as a combination of the algorithms
in [4] and [11]. HBYZ assumes that the nodes are fully connected. Following assumptions

are made regarding messages when proving correctness of algorithm HBYZ:

(a) all messages are delivered correctly within a bounded delay,
(b) source of a received message can be identified, and

(c) presence or absence of a message can be correctly detected. Whenever a node detects
a message to be absent, it assumes that the message contains value E. Detecting
presence and absence of messages correctly requires that the clocks of various nodes

be synchronized. This issue was discussed in [11].

We now present HBYZ(1) and HBYZ(?) (algorithm for m = 0 is omitted here). In
these algorithms, the following notation is used. In HBYZ(1), ny is the number of nodes
to which algorithm HBYZ(1) is applied. Similarly, in HBYZ(t), n; is the number of nodes
to which algorithm HBYZ(?) is applied. As N is the total number of nodes in the system,
n, = N. It can be seen that, n, = N —m +¢.

Algorithm HBYZ(1)

1. The sender sends its value to all the (ny — 1) receivers.

2. For each 7, let v; be the value receiver ¢ received from the sender. v; is defined to be F
if no value is received or a manifestly bad value is received from the sender. Receiver ¢
broadcasts value R(v;) to all receivers, including itself. As there are (ny; — 1) receivers,

each receiver now has (nq — 1) values.

3Bounded integers can be used by observing that function R may be applied at most m times to any
value in the agreement algorithm presented here, i.e. function R™*! need not be well-defined.



3. Each receiver finds (1 + v — m)-HVOTE of the (n; — 1) values, and uses the value
obtained by applying UnR to the outcome of HVOTE.

Lemma 5 in the appendix proves some properties of algorithm HBYZ(1).

Algorithm HBYZ(¢), 1 <t <m

1. The sender sends its value to all the (n; — 1) receivers.

2. For each 7, let v; be the value receiver ¢ received from the sender. v; is defined to be F
if no value is received or a manifestly bad value is received from the sender. Receiver ¢

acts as the sender in algorithm HBYZ(t — 1) to send value R(v;) to each of the (n;—1)

receivers, including itself.

3. For receiver ¢, let w; be the value receiver ¢ obtained from receiver j in step 2 (using
algorithm HBYZ(t — 1)). Thus, receiver ¢ now has n; — 1 values wq, wq, -+, Wy, —1.
Receiver ¢ finds (1 +u—m)-HVOTE of the (n; — 1) values, and uses the value obtained
by applying UnR to the outcome of HVOTE.

A fault-free sender’s value is never equal to £ (by definition of F). Additionally, in
HBYZ(1) and HBYZ(t), observe that each fault-free receiver ¢ transmits value R(v;) in step

2. As R(v;) # E, Vv;, a fault-free node never transmits a message with value F£.

Algorithm HBYZ(m) is used to achieve degradable agreement. The theorem below
implies that HBYZ(m) achieves desired degradable agreement.

Theorem 1 Given v > m and a system with N nodes the following conditions hold for
HBYZ(m).

1.if N>2(a+s)+c+uand a <m, then D.1 and D.2 are satisfied.

2. if N>a+2m+42s+c and a < u, then D.3 and D.4 are satisfied.



Proof: The appendix presents a proof of this theorem. a

5 Reliability and Safety Analysis

Degradable agreement is designed specifically to achieve a degraded version of agreement
in the presence of excessive arbitrary faults. Clearly, in a system where arbitrary faults are
much less likely to occur than symmetric and manifest faults, it may not be worthwhile to
use degradable agreement. In fact, as seen later, it may not be worthwhile using even the
Byzantine agreement algorithm. Although the likelihood of arbitrary hardware failures may
be small in practice, arbitrary-failure model is of interest in open distributed systems (ODS)
[6]. An ODS consists of trusted as well as non-trusted nodes. The non-trusted nodes may
demonstrate arbitrary behavior, possibly in the hands of a malicious user. The degradable

agreement algorithm would be suitable in such environments.

To evaluate degradable agreement, we define two parameters: reliability and safety.
Reliability is defined as the probability that the system isin a state where it can be guaranteed
that conditions D.1 and D.2 can be satisfied. The state of the system is defined by the 3-
tuple (a, s, ¢). Our definition of reliability is identical to that used in [8]. Safety is defined as
the probability that the system is in a state where it can be guaranteed that conditions D.3
and D.4 can be satisfied. As noted in Section 3, conditions D.3 and D.4 are strictly weaker
than D.1 and D.2. This implies that reliability < safety.

In Section 2 we stated that a symmetric fault may need to be classified as arbitrary to
accurately evaluate reliability and safety. We now illustrate this with an example. Consider
a system with N = 8 nodes such that m =1 and v = 4. Let the faults be such that a = 0,
s =2 and ¢ = 2. In this case, it may seem that the system is not conforming, as it does not
satisfy either of the two conditions in Theorem 1. This may imply that degradable agreement
cannot be achieved using our algorithm. However, now reclassify the two symmetric-faulty
nodes as arbitrary-faulty, resulting in ¢ = 2, s = 0 and ¢ = 2. Now, the system satisfies
condition 2 in Theorem 1. This implies that the system can achieve the degraded agreement

with the present fault scenario.



From the above discussion, and Theorem 1, it follows that our degradable agreement

algorithm satisfies:

e D.land D.2ifa <mand N > 2(a+ s) + ¢+ u,

e D3 and D4 ifa < wu, (a+3s) <uand N > (a+ s)+ 2m + ¢ (note: here all s

symmetric-faults are reclassified as arbitrary-faults), and

e D3and D4 ifa <wu, (a+s)>wvand N > u+2m+2(a+ s —u)+ ¢ (note: here

(u — a) symmetric-faults are reclassified as arbitrary-faults).

To evaluate reliability and safety, we use the following model. Lifetime of each node
is governed by an exponential distribution with failure rate A. Given that a fault has
occurred, iy, pts and p. denote the conditional probability that the fault is an arbitrary-
fault, a symmetric-fault and a manifest-fault, respectively.

R = set of states in which conditions D.1 and D.2 can be satisfied

S = set of states in which conditions D.3 and D.4 can be satisfied
Then, from the discussion above, we have,

R = {(a,s,¢)|a<m, N>2(a+s)+c+u}
S = {(a,s,¢)|a<m, N>2(a+s)+c+u}
U {(a,s,¢)]|a<u, (a+s)<u, N>(a+s)+2m-+c}
U{(a,s,¢)]|a<u, (a+s)>u, N>u+2m+2(a+s—u)+c}
= {(a,s,¢)|a<m, N>2(a+s)+c+u}
U {(a,s,¢)]|a<u, (a+s)<u, N>(a+s)+2m-+c}
U {(a,s,¢)|a<u, (a+s)>u, N>2(a+s)+(2m —u)+c}

Now, the probability that a node has not failed till time ¢ is e™*. Therefore, it follows that

the probability of being in state (a,s,c¢) at time ¢ is given by

Plasa = ()T b= = O = e

a S
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_ (N) (N - a) (N —a— 5) (12) ()" (1) (1 — €=M ytee=N(N=a=s=0)

Using P(a, s,c), the following expressions for reliability and safety can be obtained.

reliability = Y P(a,s,c)
(a,s,c)€ER

safety = > P(a,s,c)
(a,s,c)€S

It is a simple exercise to verify that, when m = u, R = §, and therefore, reliability

is equal to safety.

Using the above expressions for reliability and safety, we present numerical results
for some example parameters; similar results can be obtained for other parameters, as well.

Two different types of results are obtained depending on the value of various parameters, as

described below.

5.1 Reliability-safety trade-off using degradable agreement

It is clear from the definition of reliability and safety that both cannot, in general, be
maximized simultaneously. Using degradable agreement, it is possible to trade reliability
with safety. That is, it is possible to choose different values of m and u such that safety
increases and reliability decreases, with increasing value of u, reliability being maximized

when m = u. This is illustrated by the following numerical results, assuming ¢ = 10.

A=0.001 p,=.2 ps=.3 p.=05 A=0.001 p,=.15 py=.25 p.=0.6

u  1—reliability 1 —safety n
1 6.677003e—05 6.677003e—05 6
2 3.735889¢—04 2.534725e—06
3 1.089407e—03 1.447012e—07

u  1—reliability 1 —safety

1 3.896059¢—05 3.896059¢—05
2 2.434319e¢—04  1.368393e—06
3 9.324527e—04  1.447012e¢—07

n
6

— = =3
— = =3
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A=0.001 p,=.1 py=.1 p.=0.8 A=0.001 g, =.01 py=.05 p =0.94

n m u l—reliability 1 —safety n m u l—reliability 1 —safety
6 1 1 1.634273e—05 1.634273e—05 6 1 1 3.731027e—07 3.731027e—07
1 2 6.654959¢—05 2.976627e—07 1 2 8.520649¢—06 1.488311e—07
1 3 5.329331e—04 1.447012e—07 1 3 1.853509¢—04 1.447012e—07
A=0.001 p,=.01 ps=.19 p.=0.8 A=0.001 p,=.01 p;,=.01 p.=0.98
n m u l—reliability 1 —safety n m u l—reliability 1 —safety
6 1 1 2.216854e—06 2.216854e—06 6 1 1 1.770926e—07 1.770926e—07
1 2 6.654959¢—05 2.976627e—07 1 2 1.839864e—06 1.448541e—07
1 3 5.329331e—04 1.447012e—07 1 3 7.576839¢—05 1.447012e—07

The extent of increase or decrease in reliability and safety is measured in terms
of percentage change in (l1—reliability) and (1—safety), respectively. Observe that most
significant gain in safety is obtained when u is increased from 1 to 2, further increasing u
does not seem to result in significant trade-off (for the example parameters). For larger
values of p,, relatively larger gain in safety is achieved with a small or comparable reduction

in reliability. In general, the trade-off is more favorable for larger values of u,.

Reliability-safety trade-off is fundamental to many areas of fault tolerance. For results
on reliability-safety trade-off in system diagnosis and modular redundant systems, refer to

[9, 13] and [12], respectively.

5.2 Small values of (i,

In the examples presented above, increasing value of u resulted in increasing safety and
decreasing reliability. Thus, reliability was traded for safety. This trend holds only of the
value of p1, 1s not too small. Below we present numerical results, for ¢ = 0.001, which indicate
that degradable agreement results in poorer reliability and safety when g, (or probability of
arbitrary failure) is too small. The next subsection presents numerical results to show that

similar reliability degradation occurs for the algorithm presented in [4].
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A=0.001 p,=.001 p,=.019 p. =098 +=10

n m u l—reliability 1 —safety
6 1 1 3.583387e—08 3.583387e¢—08
1 2 1.839864e—06 1.448541e—07

Note that when u is increased, both (1—reliability) and (1—safety) increase, implying
that both reliability and safety decrease. In the above example, however, both u, and s
were chosen small. However, if we choose a larger u; keeping p, = 0.001, increasing u results
in a reliability-safety trade-off, as apparent from the table below. However, due to the small

value of p,, relatively small gain in safety is achieved with a larger reduction in reliability.

A=0.001 p,=.001 p,=.1 p.=0899 t=10

n m u l—reliability 1 —safety
6 1 1 5.977259¢—07 5.977259e—07
1
1

2 1.992804e—05 1.644007¢—07
3 2.929344e—04 1.447012e¢—07

5.3 Reliability achieved by Byzantine agreement

We showed above that degradable agreement algorithm for hybrid fault model is useful
primarily when p, is not negligible. We claim that the hybrid fault model itself is useful
only when p, is not very small. To justify this claim we compare reliability of the Byzantine
agreement algorithm OMH for hybrid faults presented in [4, 7] with the reliability of the

agreement algorithm (named X) that tolerates only symmetric and manifest faults.

Algorithm X is simple and can be stated as follows: (step 1) The sender sends its
value to all the (N — 1) receivers. (step 2) Receiver j, on receiving value v; from the sender,

agrees on v;, or if no value or a manifestly bad value is received, then agrees on F.

It is clear that algorithm X achieves agreement among all fault-free nodes provided,
s+ ¢ < N and a = 0. Using this observation, we can find the reliability of algorithm X.
Also, note that reliability of algorithm OMH (when g, . > 0 and g, = 0) is the same as
that of algorithm HBYZ when m = w.
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A=0.001 ¢=10

nomou o f s te  (1—reliability) for OMH (1—reliability) for X
5 1 1 .00001 .01999 .98 1.000800e—06 4.976057e—07
6 1 1 5x1077 .0199995 .98 3.440701e—08 2.985147e—08

Note that in both examples above, algorithm X achieves higher reliability than al-
gorithm OMH. This implies that, if reliability is the only parameter of interest, with low
values of p,, it is beneficial to ignore the arbitrary-faults altogether. In other words, the
hybrid fault model in [4, 7] is not necessarily appropriate. While this observation applies
to both algorithm OMH as well as HBYZ, there is a quantitative difference: there exist
(small) values of y, for which algorithm OMH achieves higher reliability than algorithm X,
but algorithm HBYZ may not yield a good trade-off. In other words, algorithm HBYZ is
effective for larger values of pu, as compared to algorithm OMH. This is to be expected,

however, as degradable agreement is designed for a larger number of arbitrary-faults.

6 Conclusions

Achieving traditional Byzantine agreement in the presence of arbitrary faults requires that
the total number of nodes be larger than three times the number of faulty nodes. Two
approaches have been proposed in the literature to circumvent this requirement: (i) hybrid
fault model approach considers three types of faults of varying degree of severity, and (ii)
degradable agreement approach relaxes the definition of agreement in the presence of ex-
cessive faults. This report combines the above two approaches and presents a degradable

agreement algorithm for the hybrid fault model.

The report also defines and evaluates reliability and safety measures for the proposed
degradable agreement algorithm and concludes that degradable agreement can be used to
trade reliability with safety, particularly when probability of an arbitrary failure is not
too small. Numerical results are presented for various parameter values to support this

conclusion.

It is shown that, it does not pay to design algorithms for that tolerate arbitrary-faults,
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unless the probability of such faults is non-negligible. In other words, the hybrid fault model
[4, 7] is effective only when arbitrary-faults are sufficiently likely to occur. Specifically, we
show that (i) the reliability-safety trade-off achieved by HBYZ is effective only for non-
negligible values of y,, and (ii) reliability achieved by the Byzantine agreement algorithms
previously proposed for the hybrid fault model [4, 7] is worse than an algorithm that ignores
arbitrary-faults, when the probability of arbitrary-faults is small.

A Proof of Correctness: Algorithm HBYZ

The proof presented here parallels the proof presented in [11], however, proofs of some of

the lemmas below are more complicated than those in [11].

The correctness of algorithm HBYZ is being proved under assumptions (a) through
(c) listed earlier in Section 4. When a message is detected to be absent by a node, that node
considers the absent message to contain value . Therefore, the following assumes that each
node always sends a message when it is supposed to; however, a faulty node may send an

incorrect message (possibly with value F).

Lemma 1 When HBYZ(t) is called with m >t > 1, the following condition holds: n; =
N —m4+t.

Proof: Follows from the observations that n,, = N, and n,_y =n;, — 1 form >t >1. O

Lemma 2 Form >t > 1, at least one of the following conditions hold for a conforming

system:
I.a<mandng >2(a+s)+c+t 4+ (u—m).
2.a<wuandn:>a-+m+2s+c+t.
Proof: Follows from Definition 1 and Lemma 1. O
Lemma 3 For a conforming system, (n,—1—c+t4+u—m)/2 > a+s, providedm >t > 1.

14



Proof: At least one of the conditions in Lemma 2 is true for a conforming system.

If condition 1 in Lemma 2 is true, then we have ny — 1 —c4+t+u—m > 2a + 2s +

2t +2(u —m). Ast > 1 and u > m, this implies that (ns — 1 —c+t+u—m)/2 > a+ s.

If condition 2 in Lemma 2 is true, then we have n;, — 1 —c+t+u—m > a+u+2s+2t.
Ast>1 and u > a, this implies that (ns — 1 —c+t+u—m)/2 > a+ s. O

Lemma 4 Consider a conforming system. It is given that, in step 2 of HBYZ(t) (t > 1), E
may be obtained only from faulty receivers and the value obtained from each manifest-faulty
receiver is either F or Vy. If (t +u—m)-HVOTE of ny, — 1 quantities obtained by a receiver,
say A, in step 3 of HBYZ(t) is v # Vg, then receiver A must have obtained v from at least

one fault-free receiver.

Proof: Consider receiver A. Let the total number of receivers from which £ was obtained
by receiver A (in step 2) be ¢#. Let the number of manifest-faulty receivers from which
F is obtained be ¢*. It follows that, ¢* < ¢# and ¢ < ¢.* By Definition 2, receiver A
must have obtained v from k nodes such that, k¥ > (n, — 1) — k — #* 4+ (t +u —m). This
implies that & + (c# -2 > (e —1—c4+t+u—m)/2. As ¢ < ¢, this implies
that & + (c# -2 >(ni—1—c+t+u—m)/2. Now, by Lemma 3, it follows that
k4 (c* —c)/2>a+s,0ork>a+s—(c* —c*)/2. Now, as E is obtained only from faulty
receivers, the number of symmetric-faulty and arbitrary-faulty receivers from which node A
did not obtain value Fis f < a+s+c*—c* =a+s—(* —c*). Ask >a+s—(c* —c)/2
and ¢#* > ¢*, we have f < k. Therefore, receiver A must have obtained ~ from at least
one fault-free or manifest-faulty node. But only F or V; could have been obtained from a
manifest-faulty receiver. Therefore, the above implies that node A must have obtained ~

from at least one fault-free receiver. O

Lemma 5 Given a conforming system, following conditions hold true for HBYZ(1).

“Recall that ¢ is the total number of manifest-faulty nodes among the N nodes in the system.
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1. HBYZ(1) satisfies condition D.1 if a < m andny > 2(a+s)+c+ 1+ (u—m).

2. HBYZ(1) satisfies condition D.2 if the number of arbitrary-faulty nodes (among the ny

nodes) is 1.

3. HBYZ(1) satisfies condition D.3 if a <w andny >a+m+2s+c+ 1.

Proof:

Case 1: a < m, ny > 2(a+s)+c+ 1+ (u—m) and the sender in HBYZ(1) is not
arbitrary-faulty.

Assume that a fault-free receiver receives value a from the sender in step 1 of
HBYZ(1). If the sender is fault-free, then « is the sender’s value; if the sender is symmetric-
faulty, then « is the value it sent to all the receivers; if the sender is manifest faulty, then
a = FE. In step 2, each fault-free receiver broadcasts R(«) to all the (ny — 1) receivers
including itself (note: R(a) # E, Va). When the broadcasts in step 2 of HBYZ(1) are
complete, each receiver will have (ny — 1) values. If ¢* receivers are manifest-faulty (¢* < ¢),
then at least ny — 1 — (¢ + s + ¢*) values must be R(«a), at least ¢* values must be F,
and at most ny — 1 — ¢* values may be non-FE. Now, let k* =ny — 1 — (a + s + ¢*). As
n1 > 2(a+s)+c+1+(u—m)and ¢* < ¢, we have k* > (ny—1)—k*—c*+1+u—m. Consider
any receiver, say A. Assume that receiver A obtained R(«) from k nodes. Then, k > k*. As
k> (ni—1)—k*—c"+1+u—mand k > k*, we have, k > (ny—1)—k—c*+1+u—m. Now
consider Definition 2. It is clear that ¢# in the definition is such that ¢# > ¢*. Therefore,
by Definition 2 and the inequality for & it follows that (1 + « — m)-HVOTE of the ny — 1
quantities must be R(«). Therefore, each fault-free receiver must obtain « in step 3 of

HBYZ(1). Thus, item 1 of the lemma is proved.

Case 2: The number of arbitrary-faulty nodes is one and the sender is arbitrary-faulty.

As there is only one arbitrary-faulty node among the ny; nodes and the sender is

arbitrary-faulty, none of the (nq — 1) receivers is arbitrary-faulty. Therefore, in step 2 of
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HBYZ(1), each fault-free receiver must obtain the same set of (ny — 1) values. This implies
that in step 3, each fault-free receiver will obtain the same value using (1 + v —m)-HVOTE.

Thus, item 2 in the lemma is proved.

Case 3: a <wu,n; >a+m+2s+c+1and the sender (in HBYZ(1)) is not arbitrary-faulty.

The sender sends its value, say «, to the receivers in step 1 of HBYZ(1). All re-
ceivers receive the same value, as the sender is not arbitrary-faulty. Each fault-free receiver
broadcasts R(«a) to all ny — 1 receivers, including itself. When the broadcasts in step 2
of HBYZ(1) are complete, each fault-free receiver will have ny — 1 values of which values
received from all non-faulty receivers will all be R(«) (note: R(a) # E, Vo). Additionally,
values received from all manifest-faulty receivers must be E. If a receiver, say A, obtains
(14+u—m)-HVOTE in step 3 equal to 8 # V4, then by Lemma 4, 3 must be equal to R(«).
In other words, each fault-free receiver must obtain (1 + v — m)-HVOTE equal to either
R(«) or Vy. Therefore, each fault-free receiver will agree on « or V; (note: UnR(Vy) = V,).

Thus, item 3 in the lemma is proved. a

Lemmas 6 through 9 below together prove that HBYZ(m ) achieves desired degradable

agreement. It is implicitly assumed that 1 <t < m.

Lemma 6 Given a conforming system, algorithm HBYZ(t) satisfies condition D.1 provided
a<mandng>2(a+s)+c+t+(u—m).

Proof: Condition D.1 assumes that the sender is not arbitrary-faulty. The proof is by
induction on t. The lemma is true for { = 1 by Lemma 5. We now assume that the lemma
is true for HBYZ(t — 1) where 2 <t < m, and prove it for HBYZ(¢). In step 1 of HBYZ(?),
the sender sends a value, say «, to all the (n; — 1) receivers. All receivers receive the same
value, as the sender is not arbitrary-faulty. In step 2, each fault-free receiver acts as a
sender in HBYZ(t — 1) to send value R(«) to all the (n; — 1) receivers, including itself. As
ng>2a+s)+e+t+(u—m),ni—1>2(a+s)+ec+(t—1)+ (u—m). Also, ny_y = ny— 1.
Therefore, the induction hypothesis holds for HBYZ(t — 1). Therefore, at the end of step
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2, every fault-free receiver gets w; = R(«) for each fault-free receiver j. If ¢* receivers are
manifest-faulty (¢ < ¢), then at least ny — 1 — (a + s + ¢*) values must be R(«). Also, as ¢*
receivers are manifest-faulty, by the induction hypothesis, at least ¢* values must be equal
to £, and at most n; — 1 — ¢* values may be non-FE. Now, let k* =n;, — 1 — (a4 s+ ¢*). As
ny > 2(a+s)+ec+t+(u—m)and ¢* < ¢, we have k* > (n;—1)—k*— "+ (t+u—m). Consider
any receiver, say A. Assume that receiver A obtained R(«) from k nodes. Then, k > k*. As
k> (ni—1)—k*—c*+14+u—mand k > k*, we have, k > (n;—1)—k—c*+14u—m. Now
consider Definition 2. It is clear that ¢# in the definition is such that ¢# > ¢*. Therefore,
by Definition 2 and the inequality for & it follows that (¢ + v — m)-HVOTE of the (n, — 1)
quantities must be R(«). Therefore, each fault-free receiver must obtain « in step 3 of

HBYZ(t). Thus, the lemma is proved. O

Lemma 7 Given a conforming system, algorithm HBYZ(t) satisfies condition D.2 provided
at most t nodes (among the n, nodes) are arbitrary-faulty and ny > 2(a+s)+c+t+(u—m).

Proof: As at most ¢t nodes are arbitrary-faulty and ¢ < m, we have a < m.

The proof is by induction on ¢. The lemma is true for £ = 1 by Lemma 5. We now

assume that the lemma is true for HBYZ(t — 1) where 2 <t < m, and prove it for HBYZ(1).

The number of arbitrary-faulty nodes is at most . Condition D.2 assumes that the
sender is arbitrary-faulty. Therefore, at most (£ — 1) of the (n; — 1) receivers are arbitrary-
faulty. In step 2, a receiver uses HBYZ(t — 1) to send a value to all the n, — 1 receivers,
including itself. As at most (£ — 1) of the (n; — 1) receivers are arbitrary-faulty, and n;_; =
(n;—1) > 2(a+s)+ec+(t—1)+(u—m), we can apply the induction hypothesis to conclude that
HBYZ(t — 1) satisfies condition D.2. As observed earlier, a < m. Therefore, by Lemma 6,
HBYZ(t —1) satisfies condition D.1 as well. Hence, at the end of step 2 of HBYZ(t), any two
fault-free receivers must obtain the same vector wy, wy,---,w,,_1. Therefore, all fault-free
receivers must obtain the same value using (f +u—m)-HVOTE in step 3 of HBYZ(?). This,
in turn, implies that all fault-free receivers agree on the same value. Thus, the lemma is

proved for HBYZ(?). O
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Lemma 8 Given a conforming system, algorithm HBYZ(t) satisfies condition D.3 provided
a<uandng>a+m-+2s+ctt.

Proof: The proof is by induction on ¢t. Condition D.3 assumes that the sender is not
arbitrary-faulty. The lemma is true for £ = 1 by Lemma 5. We now assume that the lemma

is true for HBYZ(t — 1) where 2 <t < m, and prove it for HBYZ(?).

In step 1 of HBYZ(?), the sender sends a value, say «, to all the (n; —1) receivers. All
receivers receive the same value, as the sender is not arbitrary-faulty. In step 2, each fault-
free receiver applies HBYZ(f — 1) to send value R(«) to all the (n; — 1) receivers, including
itself (note: R(a) # E, Va). Also, each manifest-faulty receiver applies® HBYZ(t — 1)
to send value E to all the (n; — 1) receivers. We can apply the induction hypothesis to
conclude that every fault-free receiver gets w; = R(«) or V; from each fault-free receiver
J (using HBYZ(t — 1)), and E or V; from each manifest-faulty receiver. If a receiver, say
A, obtains (t + v — m)-HVOTE in step 3 equal to 8 # V,, then by Lemma 4, # must be
equal to R(a). In other words, each fault-free receiver must obtain (¢t + u — m)-HVOTE
equal to either R(«) or Vy. Therefore, each fault-free receiver will agree on « or V; (note:

UnR(Vy) = Vy). Thus, the lemma is proved. 0

Lemma 9 Given a conforming system, algorithm HBYZ(m ) satisfies condition D.4 provided
a<uandn, >a-+2m+2s+c.

Proof: In this proof, we assume that m > 1. The proof for m = 1 is analogous.

Condition D.4 assumes that the sender is faulty. Therefore, at most (v — 1) of the
receivers are arbitrary-faulty. As at most (u — 1) receivers are arbitrary-faulty, at least

(n, — u) are not arbitrary-faulty.

In step 2 of HBYZ(m), each receiver sends a value to all the (n, — 1) receivers

using HBYZ(m — 1). Thus, at the end of step 2 each receiver obtains (n,, — 1) values.

SRecollect that, by definition of a manifest-fault, any message transmitted by a manifest-faulty receiver,
effectively, contains value F.
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As gy =npm —1>a+m+2s+c+ (m—1)and a < u, by Lemma 8, we know that
HBYZ(m — 1) satisfies condition D.3. Therefore, the values obtained from manifest-faulty
receivers must be £ or Vy. Also, as a receiver j sends R(v;) in step 2 using HBYZ(m — 1)

and R(v;) # E,¥v;, by Lemma 8, the value obtained from a fault-free receiver cannot be .

Assume that, in step 3, receivers A and B obtain (m+u—m)-HVOTE (i.e. v-HVOTE)
equal to # and ~ respectively, where 3 # ~, V; # 8 and V; # ~. (Also, by definition of
HVOTE, g # F and v # E.)

Define the following:

Zo (Zy) = set of receivers from which A (B) obtained value 3 (v) using HBYZ(m — 1).
Sa (Sp) = set of symmetric-faulty receivers from which A (B) obtained £ but B (A) did not.
A, (Ay) =  set of arbitrary-faulty receivers from which A (B) obtained £ but B (A) did not.
C, (Cy) = set of manifest-faulty receivers from which A (B) obtained F but B (A) obtained V;.
Sep = set of symmetric-faulty receivers from which both A and B obtained value F.
Agp =  set of arbitrary-faulty receivers from which both A and B obtained value E.
Cu, = set of manifest-faulty receivers from which both A and B obtained value E.

7= Z,US,UA, U Ay
Zr = ZyUS,U AU Ay
€, (€5) = number of F values (among the n,, — 1 values) obtained by A (B)

This implies that,® by Definition 2, |Z,| > (n,,—1)—|Z.|—e,+u. This, in turn, implies
that |ZF| > (ng — 1) — | Za| + 54| + |Aa| + | As| — €a + u. Now, as F is not obtained from any
fault-free receiver, e, = |Su| + |Aa| + |Cal + |Sas| + | Ass| + |Cas|. Therefore, | 77| > (ny, — 1) —
|l 0| 1Cal = [Casl . As |Z2] 2 |Zu], we hive, | 2] > (1 |Sun| —]Cal | sl Hu) 2.
By following similar step, we also have, | 77| > (n, —1—|Su|—|Cs| —|Ca|+u)/2. Adding the
inequalities for |Z7] and |Z7], we get | Z7|+ |27 = npn —1—[Sap| — (|Cal +2|Cas| 4+ |Co) /24 u.
Now, |Cy| 4+ |Caup| < ¢ and |Cy| + |Cus| < ¢. Therefore, | 72| + | 77| > np — 1 — | Sap| — ¢ + w.
As a < u, we have

|22+ 127 > i — 1 — |Sus| — e+ a.

As the sender in HBYZ(m) is arbitrary-faulty and total number of arbitrary-faults is

a, (a — 1) receivers are arbitrary-faulty. Also, as ¢ nodes are manifest-faulty, (n, — 1 — ¢)

®Recall that receiver A obtained u-HVOTE equal to 3, in step 3 of HBYZ(m).
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receivers are not manifest-faulty, and (n,, —c—a) receivers are either fault-free or symmetric-

faulty. Also, observe the following:

1. Asnoted earlier, in step 2, either F or Vj is obtained from each manifest-faulty receiver.
Therefore, Z, and 7, cannot contain any manifest-faulty receivers. Therefore, Z and

Z7 also do not contain any manifest-faulty receivers.

2. Z,N 7y cannot contain a fault-free receiver, because (i) Lemma 8 holds for BYZ(m—1),
and (ii) we assumed that 8 # ~, V; # 8 and V; # . This, in turn, implies that Z*N 7/

cannot contain a fault-free receiver.

3. By an argument similar to (2) above, Z, N Z, cannot contain a symmetric-faulty

receiver. Therefore, as S,NS, = (), Z*NZ; cannot contain a symmetric-faulty receiver.
4. (Z: U ZF)N Se = 0, i.e., no receivers in Sy, belong to Z* U Zj.

5. As Ay C ZF N ZF, an arbitrary-faulty receiver may belong to both Z* and Z;. (Rec-

ollect that @ — 1 receivers are arbitrary-faulty.)

Observations 2 and 3 imply that sets Z* and Z; do not have any fault-free or symmetric-
faulty nodes in common. Thus, by the above observations, we have |Z*| + | 77| < 2(a —1) +

(N —c—a—|Sw|) =nm —c—|Sw| +a—2, e,
24125 < i — 1~ || —

But this inequality contradicts one derived earlier. Therefore, our assumption that 3 # ~,
Vi # B and V; # 4 must be incorrect. In other words, at least one of the following must be
true: f =+, or V; = f or V; = ~. Thus, the lemma is proved. a

Theorem 1 Given u > m and a system with N nodes the following conditions hold for
HBYZ(m).
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1.if N>2(a+s)+c+uand a <m, then D.1 and D.2 are satisfied.

2. if N>a+2m+42s+c and a < u, then D.3 and D.4 are satisfied.

Proof: The proof follows from Lemmas 6 through 9 by choosing ¢t = m. O
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