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1 IntroductionConsider a system consisting of a sender that wants to send a value to certain receivers.Various agreement algorithms have been proposed for this purpose (e.g [1, 2, 3]). thattolerate arbitrary (possibly malicious) failures. The requirement is typically that the fault-free receivers must all agree on the same value [2, 3]. Dolev [1] analyzes a weaker form ofagreement. Prior work has shown that such agreements are impossible if a third of the nodes(or more) are faulty. In other words, the number of nodes in the system must be larger thanthree times the number of faulty nodes. Two very di�erent approaches have been presentedto circumvent this requirement. These approaches either weaken the fault model or weakenthe de�nition of agreement.� Various researchers [4, 5, 7] have presented agreement protocols that tolerate a mixof Byzantine failures and other less severe types of failures. As all the faults in thesystem are not necessarily Byzantine, these protocols are often able to tolerate morethan a third of the nodes being faulty. We will use the hybrid fault model [4] thatdivides faults into three classes: arbitrary, symmetric and manifest (elaborated later).� We recently presented the degradable agreement [11] approach for Byzantine faults.The degradable agreement protocol achieves traditional Byzantine agreement1 [3] (here-after referred to as Lamport's Byzantine agreement) up to a certain number of Byzan-tine faults and a degraded form of agreement with a higher number of faults. Thedegraded form of agreement allows the fault-free receivers to agree on at most twodi�erent values, one of which is necessarily the default value.2 Note that Lamport'sagreement requires all nodes to agree on an identical value. By weakening the de�ni-tion of agreement when excessive faults exist, our approach can tolerate more than athird of the nodes being faulty.1Although Byzantine agreement was de�ned by Lamport, Shostak and Pease [3], for brevity we refer toit as Lamport's Byzantine agreement.2Default value, denoted Vd, is distinguishable from all other values.1



This report presents an agreement protocol that combines the above two approaches.Speci�cally, we present a degradable agreement algorithm for the hybrid fault model pre-sented in [4]. Also, we de�ne safety and reliability measures and show that the proposedalgorithm e�ectively trades reliability with safety. This report is organized as follows. Sec-tion 2 presents the hybrid fault model and Section 3 de�nes degradable agreement. Analgorithm for achieving degradable agreement with hybrid fault model is presented in Sec-tion 4. Section 5 evaluates reliability and safety measures for the proposed algorithm, andalso shows that the hybrid fault model is useful only when arbitrary faults occur with non-negligible probability. Conclusions are presented in Section 6.2 Hybrid Fault ModelIn the hybrid fault model [4, 7], the faults are divided into three classes (in order of increasingseverity): manifest faults, symmetric faults and arbitrary faults. A manifest fault is onethat produces detectably missing values or values that can be detected as bad by all non-faulty recipients [4]. Both symmetric and arbitrary faults can produce values that arenot detectably bad. However, a symmetric fault delivers identical value to all recipients,whereas, an arbitrary fault behavior is unconstrained (e.g. may deliver di�erent wrongvalues to di�erent recipients). Thus, an arbitrary fault is equivalent to a Byzantine fault [3].A value sent by a manifest-faulty node can always be detected to be erroneous by therecipient. Therefore, it is assumed that a manifest-faulty node always sends a value denotedby E; E is a value distinguishable from all other values including default value Vd. Defaultvalue Vd is also distinguishable from all other relevant values.We use the following notation:N = number of nodes in the system under consideration.a = number of arbitrary-faulty nodes in the system.s = number of symmetric-faulty nodes in the system.2



c = number of manifest-faulty nodes in the system.Note that symmetric fault is a restricted type of an arbitrary fault. This leads tothe question of how to count the number of arbitrary and symmetric faults. For exampleconsider a system containing 2 arbitrary-faulty and 3 symmetric-faulty nodes. It is clearthat, for this case, we can count a = 2 and s = 3. As a symmetric-fault is less severethan an arbitrary-fault, in this case, an algorithm that can tolerate 3 arbitrary-faults and2 symmetric-faults can tolerate the present fault situation. Therefore, for the purpose ofanalysis, one may classify one of the symmetric-faulty nodes as arbitrary-faulty, and assumea = 3 and s = 2 (even though in reality, a = 2 and s = 3). It turns out that this counter-intuitive classi�cation is useful in accurately evaluating reliability and safety of the proposedapproach. We will return to this subject in Section 5. Although a manifest-faulty node mayalso be classi�ed as symmetric-faulty or arbitrary-faulty, our analysis does not gain fromthis. The algorithm presented in this report achieves degradable agreement in the presenceof a arbitrary-faults, s symmetric-faults and c manifest-faults, provided certain conditionsare satis�ed. The next section elaborates on these conditions as well as the de�nition ofdegradable agreement.3 Degradable Agreement with Hybrid Fault ModelThe system model can be described as follows. The system consists of a sender and somereceivers. The sender wants to send its value to the receivers. The term \sender's value"means� the value the sender wants to inform every receiver, when the sender is fault-free,� the value the sender sends to every receiver, when the sender is symmetric-faulty, and� value E, when the sender is manifest-faulty.3



In the following, the term node may refer to the sender or a receiver. As noted earlier, Vddenotes the default value, which is distinguishable from all other relevant values.Degradable Agreement with Hybrid Faults: The degradable agreement algorithmpresented in this report satis�es the following two conditions. Note that the algorithmpresented by Lincoln and Rushby [4] only satis�es a condition similar to �rst of the twoconditions.� if N > 2(a+ s) + c+ u and a � m, then D.1 and D.2 stated below are satis�ed.� if N > a+ 2m+ 2s + c and a � u, then D.3 and D.4 stated below are satis�ed.(D.1) If the sender is not arbitrary-faulty, then all the fault-free receivers must agree on thesender's value.(D.2) If the sender is arbitrary-faulty, then the fault-free receivers must agree on an identicalvalue.(D.3) If the sender is not arbitrary-faulty, then the fault-free receivers may be partitionedinto at most two classes. The fault-free receivers in one class must agree on the sender'svalue, and the fault-free receivers in the other class must all agree on the default value.(D.4) If the sender is arbitrary-faulty, then the fault-free receivers may be partitioned intoat most two classes. The fault-free receivers in one class must agree on the defaultvalue, and the fault-free receivers in the other class must all agree on an identicalvalue.Conditions D.1 and D.2 are identical to those satis�ed by Lamport's Byzantine agree-ment [3]. Conditions D.3 and D.4 de�ne degraded agreement. Observe that conditions D.3and D.4 are strictly weaker than D.1 and D.2, respectively, i.e., satisfying D.1 (D.2) issu�cient to satisfy D.3 (D.4) but not vice-versa.Note that when m = u, condition 1 above is equivalent to that satis�ed by thealgorithm in [7, 4]. Also, when only arbitrary failures occur, our algorithm achieves m=u-degradable agreement, as de�ned in [11]. 4



De�nition 1 A system is said to be a conforming system, if at least one of the followingconditions hold, where m � u:1. a � m and N > 2(a+ s) + c+ u, and2. a � u and N > a+ 2m+ 2s + c.4 An Algorithm for Degradable AgreementWe begin with de�nition of a special voting function to be used in our algorithm.De�nition 2 �-HVOTE (or �-hybrid vote) of � quantities w1, w2, � � �, w� is � (where� 6= Vd and � 6= E) if k quantities are � such that k � � � k � c# + �, where c# is thenumber of quantities that are equal to E. If no such � exists, then �-hybrid vote is de�nedto be the default value Vd.For example, consider eight values �; ; �; �; ;E; ; . 1-HVOTE of these eight values is ,whereas 2-HOTE is Vd. Similarly, 1-HVOTE of �;E;E;E;E; �; �; � is Vd. The followingobservations can be made from the de�nition of HVOTE.1. HVOTE cannot equal E.2. Provided � � 1, if �-HVOTE of some � values is � 6= Vd, then majority vote of thenon-E values among these � values is also �. The converse is not always true, however.3. Provided � � 1, the condition k � � � k� c# + � cannot hold true simultaneously fortwo di�erent values, say � and �, such that � 6= Vd; E and � 6= Vd; E. A consequenceof this observation is that, if the condition k � � � k � c# + � is true for some value ( 6= Vd; E) then we can be certain that HVOTE is equal to .The algorithm presented here uses two functions R and UnR, called the wrapper andunwrapper functions, respectively [4]. Function R and UnR are de�ned such that (i) for all� 6= Vd, we have R(�) 6= E and R(�) 6= Vd, (ii) R(Vd) = Vd and (iii) UnR(R(�)) = � for all5



�. Lincoln and Rushby [4] suggest a simple implementation of R and UnR using boundedintegers.3 A similar implementation can be used here.Algorithm HBYZ presented below may be viewed as a combination of the algorithmsin [4] and [11]. HBYZ assumes that the nodes are fully connected. Following assumptionsare made regarding messages when proving correctness of algorithm HBYZ:(a) all messages are delivered correctly within a bounded delay,(b) source of a received message can be identi�ed, and(c) presence or absence of a message can be correctly detected. Whenever a node detectsa message to be absent, it assumes that the message contains value E. Detectingpresence and absence of messages correctly requires that the clocks of various nodesbe synchronized. This issue was discussed in [11].We now present HBYZ(1) and HBYZ(t) (algorithm for m = 0 is omitted here). Inthese algorithms, the following notation is used. In HBYZ(1), n1 is the number of nodesto which algorithm HBYZ(1) is applied. Similarly, in HBYZ(t), nt is the number of nodesto which algorithm HBYZ(t) is applied. As N is the total number of nodes in the system,nm = N . It can be seen that, nt = N �m+ t.Algorithm HBYZ(1)1. The sender sends its value to all the (n1 � 1) receivers.2. For each i, let vi be the value receiver i received from the sender. vi is de�ned to be Eif no value is received or a manifestly bad value is received from the sender. Receiver ibroadcasts value R(vi) to all receivers, including itself. As there are (n1� 1) receivers,each receiver now has (n1 � 1) values.3Bounded integers can be used by observing that function R may be applied at most m times to anyvalue in the agreement algorithm presented here, i.e. function Rm+1 need not be well-de�ned.6



3. Each receiver �nds (1 + u � m)-HVOTE of the (n1 � 1) values, and uses the valueobtained by applying UnR to the outcome of HVOTE.Lemma 5 in the appendix proves some properties of algorithm HBYZ(1).Algorithm HBYZ(t), 1 < t � m1. The sender sends its value to all the (nt � 1) receivers.2. For each i, let vi be the value receiver i received from the sender. vi is de�ned to be Eif no value is received or a manifestly bad value is received from the sender. Receiver iacts as the sender in algorithm HBYZ(t�1) to send value R(vi) to each of the (nt�1)receivers, including itself.3. For receiver i, let wj be the value receiver i obtained from receiver j in step 2 (usingalgorithm HBYZ(t � 1)). Thus, receiver i now has nt � 1 values w1; w2; � � � ; wnt�1.Receiver i �nds (t+u�m)-HVOTE of the (nt�1) values, and uses the value obtainedby applying UnR to the outcome of HVOTE.A fault-free sender's value is never equal to E (by de�nition of E). Additionally, inHBYZ(1) and HBYZ(t), observe that each fault-free receiver i transmits value R(vi) in step2. As R(vi) 6= E; 8vi, a fault-free node never transmits a message with value E.Algorithm HBYZ(m) is used to achieve degradable agreement. The theorem belowimplies that HBYZ(m) achieves desired degradable agreement.Theorem 1 Given u � m and a system with N nodes the following conditions hold forHBYZ(m).1. if N > 2(a+ s) + c+ u and a � m, then D.1 and D.2 are satis�ed.2. if N > a+ 2m+ 2s+ c and a � u, then D.3 and D.4 are satis�ed.7



Proof: The appendix presents a proof of this theorem. 25 Reliability and Safety AnalysisDegradable agreement is designed speci�cally to achieve a degraded version of agreementin the presence of excessive arbitrary faults. Clearly, in a system where arbitrary faults aremuch less likely to occur than symmetric and manifest faults, it may not be worthwhile touse degradable agreement. In fact, as seen later, it may not be worthwhile using even theByzantine agreement algorithm. Although the likelihood of arbitrary hardware failures maybe small in practice, arbitrary-failure model is of interest in open distributed systems (ODS)[6]. An ODS consists of trusted as well as non-trusted nodes. The non-trusted nodes maydemonstrate arbitrary behavior, possibly in the hands of a malicious user. The degradableagreement algorithm would be suitable in such environments.To evaluate degradable agreement, we de�ne two parameters: reliability and safety.Reliability is de�ned as the probability that the system is in a state where it can be guaranteedthat conditions D.1 and D.2 can be satis�ed. The state of the system is de�ned by the 3-tuple (a; s; c). Our de�nition of reliability is identical to that used in [8]. Safety is de�ned asthe probability that the system is in a state where it can be guaranteed that conditions D.3and D.4 can be satis�ed. As noted in Section 3, conditions D.3 and D.4 are strictly weakerthan D.1 and D.2. This implies that reliability � safety.In Section 2 we stated that a symmetric fault may need to be classi�ed as arbitrary toaccurately evaluate reliability and safety. We now illustrate this with an example. Considera system with N = 8 nodes such that m = 1 and u = 4. Let the faults be such that a = 0,s = 2 and c = 2. In this case, it may seem that the system is not conforming, as it does notsatisfy either of the two conditions in Theorem 1. This may imply that degradable agreementcannot be achieved using our algorithm. However, now reclassify the two symmetric-faultynodes as arbitrary-faulty, resulting in a = 2, s = 0 and c = 2. Now, the system satis�escondition 2 in Theorem 1. This implies that the system can achieve the degraded agreementwith the present fault scenario. 8



From the above discussion, and Theorem 1, it follows that our degradable agreementalgorithm satis�es:� D.1 and D.2 if a � m and N > 2(a+ s) + c+ u,� D.3 and D.4 if a � u, (a + s) � u and N > (a + s) + 2m + c (note: here all ssymmetric-faults are reclassi�ed as arbitrary-faults), and� D.3 and D.4 if a � u, (a + s) > u and N > u + 2m + 2(a + s � u) + c (note: here(u� a) symmetric-faults are reclassi�ed as arbitrary-faults).To evaluate reliability and safety, we use the following model. Lifetime of each nodeis governed by an exponential distribution with failure rate �. Given that a fault hasoccurred, �a, �s and �c denote the conditional probability that the fault is an arbitrary-fault, a symmetric-fault and a manifest-fault, respectively.R = set of states in which conditions D.1 and D.2 can be satis�edS = set of states in which conditions D.3 and D.4 can be satis�edThen, from the discussion above, we have,R = f(a; s; c) j a � m; N > 2(a+ s) + c+ ugS = f(a; s; c) j a � m; N > 2(a+ s) + c+ ug[ f(a; s; c) j a � u; (a+ s) � u; N > (a+ s) + 2m+ cg[ f(a; s; c) j a � u; (a+ s) > u; N > u+ 2m + 2(a+ s� u) + cg= f(a; s; c) j a � m; N > 2(a+ s) + c+ ug[ f(a; s; c) j a � u; (a+ s) � u; N > (a+ s) + 2m+ cg[ f(a; s; c) j a � u; (a+ s) > u; N > 2(a+ s) + (2m� u) + cgNow, the probability that a node has not failed till time t is e��t. Therefore, it follows thatthe probability of being in state (a; s; c) at time t is given byP (a; s; c) =  Na! N � as ! N � a� sc ! [�a(1 � e��t)]a [�s(1� e��t)]s [�c(1� e��t)]c [e��t]N�a�s�c9



=  Na! N � as ! N � a� sc ! (�a)a(�s)s(�c)c(1 � e��t)a+s+ce��t(N�a�s�c)Using P (a; s; c), the following expressions for reliability and safety can be obtained.reliability = X(a;s;c)2RP (a; s; c)safety = X(a;s;c)2S P (a; s; c)It is a simple exercise to verify that, when m = u, R = S, and therefore, reliabilityis equal to safety.Using the above expressions for reliability and safety, we present numerical resultsfor some example parameters; similar results can be obtained for other parameters, as well.Two di�erent types of results are obtained depending on the value of various parameters, asdescribed below.5.1 Reliability-safety trade-o� using degradable agreementIt is clear from the de�nition of reliability and safety that both cannot, in general, bemaximized simultaneously. Using degradable agreement, it is possible to trade reliabilitywith safety. That is, it is possible to choose di�erent values of m and u such that safetyincreases and reliability decreases, with increasing value of u, reliability being maximizedwhen m = u. This is illustrated by the following numerical results, assuming t = 10.� = 0:001 �a = :2 �s = :3 �c = 0:5n m u 1�reliability 1�safety6 1 1 6.677003e�05 6.677003e�051 2 3.735889e�04 2.534725e�061 3 1.089407e�03 1.447012e�07 � = 0:001 �a = :15 �s = :25 �c = 0:6n m u 1�reliability 1�safety6 1 1 3.896059e�05 3.896059e�051 2 2.434319e�04 1.368393e�061 3 9.324527e�04 1.447012e�0710



� = 0:001 �a = :1 �s = :1 �c = 0:8n m u 1�reliability 1�safety6 1 1 1.634273e�05 1.634273e�051 2 6.654959e�05 2.976627e�071 3 5.329331e�04 1.447012e�07 � = 0:001 �a = :01 �s = :05 �c = 0:94n m u 1�reliability 1�safety6 1 1 3.731027e�07 3.731027e�071 2 8.520649e�06 1.488311e�071 3 1.853509e�04 1.447012e�07� = 0:001 �a = :01 �s = :19 �c = 0:8n m u 1�reliability 1�safety6 1 1 2.216854e�06 2.216854e�061 2 6.654959e�05 2.976627e�071 3 5.329331e�04 1.447012e�07 � = 0:001 �a = :01 �s = :01 �c = 0:98n m u 1�reliability 1�safety6 1 1 1.770926e�07 1.770926e�071 2 1.839864e�06 1.448541e�071 3 7.576839e�05 1.447012e�07The extent of increase or decrease in reliability and safety is measured in termsof percentage change in (1�reliability) and (1�safety), respectively. Observe that mostsigni�cant gain in safety is obtained when u is increased from 1 to 2, further increasing udoes not seem to result in signi�cant trade-o� (for the example parameters). For largervalues of �a, relatively larger gain in safety is achieved with a small or comparable reductionin reliability. In general, the trade-o� is more favorable for larger values of �a.Reliability-safety trade-o� is fundamental to many areas of fault tolerance. For resultson reliability-safety trade-o� in system diagnosis and modular redundant systems, refer to[9, 13] and [12], respectively.5.2 Small values of �aIn the examples presented above, increasing value of u resulted in increasing safety anddecreasing reliability. Thus, reliability was traded for safety. This trend holds only of thevalue of �a is not too small. Below we present numerical results, for � = 0:001, which indicatethat degradable agreement results in poorer reliability and safety when �a (or probability ofarbitrary failure) is too small. The next subsection presents numerical results to show thatsimilar reliability degradation occurs for the algorithm presented in [4].11



� = 0:001 �a = :001 �s = :019 �c = 0:98 t = 10n m u 1�reliability 1�safety6 1 1 3.583387e�08 3.583387e�081 2 1.839864e�06 1.448541e�07Note that when u is increased, both (1�reliability) and (1�safety) increase, implyingthat both reliability and safety decrease. In the above example, however, both �a and �swere chosen small. However, if we choose a larger �s keeping �a = 0:001, increasing u resultsin a reliability-safety trade-o�, as apparent from the table below. However, due to the smallvalue of �a, relatively small gain in safety is achieved with a larger reduction in reliability.� = 0:001 �a = :001 �s = :1 �c = 0:899 t = 10n m u 1�reliability 1�safety6 1 1 5.977259e�07 5.977259e�071 2 1.992804e�05 1.644007e�071 3 2.929344e�04 1.447012e�075.3 Reliability achieved by Byzantine agreementWe showed above that degradable agreement algorithm for hybrid fault model is usefulprimarily when �a is not negligible. We claim that the hybrid fault model itself is usefulonly when �a is not very small. To justify this claim we compare reliability of the Byzantineagreement algorithm OMH for hybrid faults presented in [4, 7] with the reliability of theagreement algorithm (named X) that tolerates only symmetric and manifest faults.Algorithm X is simple and can be stated as follows: (step 1) The sender sends itsvalue to all the (N � 1) receivers. (step 2) Receiver j, on receiving value vj from the sender,agrees on vj, or if no value or a manifestly bad value is received, then agrees on E.It is clear that algorithm X achieves agreement among all fault-free nodes provided,s + c < N and a = 0. Using this observation, we can �nd the reliability of algorithm X.Also, note that reliability of algorithm OMH (when �s; �c > 0 and �a = 0) is the same asthat of algorithm HBYZ when m = u. 12



� = 0:001 t = 10n m u �a �s �c (1�reliability) for OMH (1�reliability) for X5 1 1 .00001 .01999 .98 1.000800e�06 4.976057e�076 1 1 5x10�7 .0199995 .98 3.440701e�08 2.985147e�08Note that in both examples above, algorithm X achieves higher reliability than al-gorithm OMH. This implies that, if reliability is the only parameter of interest, with lowvalues of �a, it is bene�cial to ignore the arbitrary-faults altogether. In other words, thehybrid fault model in [4, 7] is not necessarily appropriate. While this observation appliesto both algorithm OMH as well as HBYZ, there is a quantitative di�erence: there exist(small) values of �a for which algorithm OMH achieves higher reliability than algorithm X,but algorithm HBYZ may not yield a good trade-o�. In other words, algorithm HBYZ ise�ective for larger values of �a as compared to algorithm OMH. This is to be expected,however, as degradable agreement is designed for a larger number of arbitrary-faults.6 ConclusionsAchieving traditional Byzantine agreement in the presence of arbitrary faults requires thatthe total number of nodes be larger than three times the number of faulty nodes. Twoapproaches have been proposed in the literature to circumvent this requirement: (i) hybridfault model approach considers three types of faults of varying degree of severity, and (ii)degradable agreement approach relaxes the de�nition of agreement in the presence of ex-cessive faults. This report combines the above two approaches and presents a degradableagreement algorithm for the hybrid fault model.The report also de�nes and evaluates reliability and safety measures for the proposeddegradable agreement algorithm and concludes that degradable agreement can be used totrade reliability with safety, particularly when probability of an arbitrary failure is nottoo small. Numerical results are presented for various parameter values to support thisconclusion.It is shown that, it does not pay to design algorithms for that tolerate arbitrary-faults,13



unless the probability of such faults is non-negligible. In other words, the hybrid fault model[4, 7] is e�ective only when arbitrary-faults are su�ciently likely to occur. Speci�cally, weshow that (i) the reliability-safety trade-o� achieved by HBYZ is e�ective only for non-negligible values of �a, and (ii) reliability achieved by the Byzantine agreement algorithmspreviously proposed for the hybrid fault model [4, 7] is worse than an algorithm that ignoresarbitrary-faults, when the probability of arbitrary-faults is small.A Proof of Correctness: Algorithm HBYZThe proof presented here parallels the proof presented in [11], however, proofs of some ofthe lemmas below are more complicated than those in [11].The correctness of algorithm HBYZ is being proved under assumptions (a) through(c) listed earlier in Section 4. When a message is detected to be absent by a node, that nodeconsiders the absent message to contain value E. Therefore, the following assumes that eachnode always sends a message when it is supposed to; however, a faulty node may send anincorrect message (possibly with value E).Lemma 1 When HBYZ(t) is called with m � t � 1, the following condition holds: nt =N �m+ t.Proof: Follows from the observations that nm = N , and nt�1 = nt � 1 for m � t > 1. 2Lemma 2 For m � t � 1, at least one of the following conditions hold for a conformingsystem:1. a � m and nt > 2(a+ s) + c+ t+ (u�m).2. a � u and nt > a+m+ 2s + c+ t.Proof: Follows from De�nition 1 and Lemma 1. 2Lemma 3 For a conforming system, (nt�1�c+ t+u�m)=2 > a+s, provided m � t � 1.14



Proof: At least one of the conditions in Lemma 2 is true for a conforming system.If condition 1 in Lemma 2 is true, then we have nt � 1 � c+ t+ u�m � 2a+ 2s +2t+ 2(u�m). As t � 1 and u � m, this implies that (nt � 1 � c+ t+ u�m)=2 > a+ s.If condition 2 in Lemma 2 is true, then we have nt�1�c+t+u�m � a+u+2s+2t.As t � 1 and u � a, this implies that (nt � 1 � c+ t+ u�m)=2 > a+ s. 2Lemma 4 Consider a conforming system. It is given that, in step 2 of HBYZ(t) (t � 1), Emay be obtained only from faulty receivers and the value obtained from each manifest-faultyreceiver is either E or Vd. If (t+u�m)-HVOTE of nt� 1 quantities obtained by a receiver,say A, in step 3 of HBYZ(t) is  6= Vd, then receiver A must have obtained  from at leastone fault-free receiver.Proof: Consider receiver A. Let the total number of receivers from which E was obtainedby receiver A (in step 2) be c#. Let the number of manifest-faulty receivers from whichE is obtained be c�. It follows that, c� � c# and c� � c.4 By De�nition 2, receiver Amust have obtained  from k nodes such that, k � (nt � 1) � k � c# + (t + u �m). Thisimplies that k + (c# � c�)=2 � (nt � 1 � c� + t + u � m)=2. As c� � c, this impliesthat k + (c# � c�)=2 � (nt � 1 � c + t + u � m)=2. Now, by Lemma 3, it follows thatk + (c# � c�)=2 > a+ s, or k > a+ s� (c# � c�)=2. Now, as E is obtained only from faultyreceivers, the number of symmetric-faulty and arbitrary-faulty receivers from which node Adid not obtain value E is f � a+ s+ c�� c# = a+ s� (c#� c�). As k > a+ s� (c#� c�)=2and c# � c�, we have f < k. Therefore, receiver A must have obtained  from at leastone fault-free or manifest-faulty node. But only E or Vd could have been obtained from amanifest-faulty receiver. Therefore, the above implies that node A must have obtained from at least one fault-free receiver. 2Lemma 5 Given a conforming system, following conditions hold true for HBYZ(1).4Recall that c is the total number of manifest-faulty nodes among the N nodes in the system.15



1. HBYZ(1) satis�es condition D.1 if a � m and n1 > 2(a+ s) + c+ 1 + (u�m).2. HBYZ(1) satis�es condition D.2 if the number of arbitrary-faulty nodes (among the n1nodes) is 1.3. HBYZ(1) satis�es condition D.3 if a � u and n1 > a+m+ 2s + c+ 1.Proof:Case 1: a � m, n1 > 2(a + s) + c + 1 + (u � m) and the sender in HBYZ(1) is notarbitrary-faulty.Assume that a fault-free receiver receives value � from the sender in step 1 ofHBYZ(1). If the sender is fault-free, then � is the sender's value; if the sender is symmetric-faulty, then � is the value it sent to all the receivers; if the sender is manifest faulty, then� = E. In step 2, each fault-free receiver broadcasts R(�) to all the (n1 � 1) receiversincluding itself (note: R(�) 6= E, 8�). When the broadcasts in step 2 of HBYZ(1) arecomplete, each receiver will have (n1� 1) values. If c� receivers are manifest-faulty (c� � c),then at least n1 � 1 � (a + s + c�) values must be R(�), at least c� values must be E,and at most n1 � 1 � c� values may be non-E. Now, let k� = n1 � 1 � (a + s + c�). Asn1 > 2(a+s)+c+1+(u�m) and c� � c, we have k� � (n1�1)�k��c�+1+u�m. Considerany receiver, say A. Assume that receiver A obtained R(�) from k nodes. Then, k � k�. Ask� � (n1�1)�k��c�+1+u�m and k � k�, we have, k � (n1�1)�k�c�+1+u�m. Nowconsider De�nition 2. It is clear that c# in the de�nition is such that c# � c�. Therefore,by De�nition 2 and the inequality for k it follows that (1 + u �m)-HVOTE of the n1 � 1quantities must be R(�). Therefore, each fault-free receiver must obtain � in step 3 ofHBYZ(1). Thus, item 1 of the lemma is proved.Case 2: The number of arbitrary-faulty nodes is one and the sender is arbitrary-faulty.As there is only one arbitrary-faulty node among the n1 nodes and the sender isarbitrary-faulty, none of the (n1 � 1) receivers is arbitrary-faulty. Therefore, in step 2 of16



HBYZ(1), each fault-free receiver must obtain the same set of (n1 � 1) values. This impliesthat in step 3, each fault-free receiver will obtain the same value using (1+u�m)-HVOTE.Thus, item 2 in the lemma is proved.Case 3: a � u, n1 > a+m+2s+c+1 and the sender (in HBYZ(1)) is not arbitrary-faulty.The sender sends its value, say �, to the receivers in step 1 of HBYZ(1). All re-ceivers receive the same value, as the sender is not arbitrary-faulty. Each fault-free receiverbroadcasts R(�) to all n1 � 1 receivers, including itself. When the broadcasts in step 2of HBYZ(1) are complete, each fault-free receiver will have n1 � 1 values of which valuesreceived from all non-faulty receivers will all be R(�) (note: R(�) 6= E; 8�). Additionally,values received from all manifest-faulty receivers must be E. If a receiver, say A, obtains(1+u�m)-HVOTE in step 3 equal to � 6= Vd, then by Lemma 4, � must be equal to R(�).In other words, each fault-free receiver must obtain (1 + u � m)-HVOTE equal to eitherR(�) or Vd. Therefore, each fault-free receiver will agree on � or Vd (note: UnR(Vd) = Vd).Thus, item 3 in the lemma is proved. 2Lemmas 6 through 9 below together prove that HBYZ(m) achieves desired degradableagreement. It is implicitly assumed that 1 � t � m.Lemma 6 Given a conforming system, algorithm HBYZ(t) satis�es condition D.1 provideda � m and nt > 2(a+ s) + c+ t+ (u�m).Proof: Condition D.1 assumes that the sender is not arbitrary-faulty. The proof is byinduction on t. The lemma is true for t = 1 by Lemma 5. We now assume that the lemmais true for HBYZ(t� 1) where 2 � t � m, and prove it for HBYZ(t). In step 1 of HBYZ(t),the sender sends a value, say �, to all the (nt � 1) receivers. All receivers receive the samevalue, as the sender is not arbitrary-faulty. In step 2, each fault-free receiver acts as asender in HBYZ(t� 1) to send value R(�) to all the (nt � 1) receivers, including itself. Asnt > 2(a+ s)+ c+ t+(u�m), nt� 1 > 2(a+ s)+ c+(t� 1)+ (u�m). Also, nt�1 = nt� 1.Therefore, the induction hypothesis holds for HBYZ(t� 1). Therefore, at the end of step17



2, every fault-free receiver gets wj = R(�) for each fault-free receiver j. If c� receivers aremanifest-faulty (c� � c), then at least nt� 1� (a+ s+ c�) values must be R(�). Also, as c�receivers are manifest-faulty, by the induction hypothesis, at least c� values must be equalto E, and at most nt � 1� c� values may be non-E. Now, let k� = nt� 1� (a+ s+ c�). Asnt > 2(a+s)+c+t+(u�m) and c� � c, we have k� � (nt�1)�k��c�+(t+u�m). Considerany receiver, say A. Assume that receiver A obtained R(�) from k nodes. Then, k � k�. Ask� � (nt�1)�k��c�+1+u�m and k � k�, we have, k � (nt�1)�k�c�+1+u�m. Nowconsider De�nition 2. It is clear that c# in the de�nition is such that c# � c�. Therefore,by De�nition 2 and the inequality for k it follows that (t+ u�m)-HVOTE of the (nt � 1)quantities must be R(�). Therefore, each fault-free receiver must obtain � in step 3 ofHBYZ(t). Thus, the lemma is proved. 2Lemma 7 Given a conforming system, algorithm HBYZ(t) satis�es condition D.2 providedat most t nodes (among the nt nodes) are arbitrary-faulty and nt > 2(a+s)+c+ t+(u�m).Proof: As at most t nodes are arbitrary-faulty and t � m, we have a � m.The proof is by induction on t. The lemma is true for t = 1 by Lemma 5. We nowassume that the lemma is true for HBYZ(t�1) where 2 � t � m, and prove it for HBYZ(t).The number of arbitrary-faulty nodes is at most t. Condition D.2 assumes that thesender is arbitrary-faulty. Therefore, at most (t� 1) of the (nt � 1) receivers are arbitrary-faulty. In step 2, a receiver uses HBYZ(t � 1) to send a value to all the nt � 1 receivers,including itself. As at most (t� 1) of the (nt � 1) receivers are arbitrary-faulty, and nt�1 =(nt�1) > 2(a+s)+c+(t�1)+(u�m), we can apply the induction hypothesis to conclude thatHBYZ(t� 1) satis�es condition D.2. As observed earlier, a � m. Therefore, by Lemma 6,HBYZ(t�1) satis�es condition D.1 as well. Hence, at the end of step 2 of HBYZ(t), any twofault-free receivers must obtain the same vector w1; w2; � � � ; wnt�1. Therefore, all fault-freereceivers must obtain the same value using (t+u�m)-HVOTE in step 3 of HBYZ(t). This,in turn, implies that all fault-free receivers agree on the same value. Thus, the lemma isproved for HBYZ(t). 218



Lemma 8 Given a conforming system, algorithm HBYZ(t) satis�es condition D.3 provideda � u and nt > a+m+ 2s+ c+ t.Proof: The proof is by induction on t. Condition D.3 assumes that the sender is notarbitrary-faulty. The lemma is true for t = 1 by Lemma 5. We now assume that the lemmais true for HBYZ(t� 1) where 2 � t � m, and prove it for HBYZ(t).In step 1 of HBYZ(t), the sender sends a value, say �, to all the (nt�1) receivers. Allreceivers receive the same value, as the sender is not arbitrary-faulty. In step 2, each fault-free receiver applies HBYZ(t� 1) to send value R(�) to all the (nt � 1) receivers, includingitself (note: R(�) 6= E; 8�). Also, each manifest-faulty receiver applies5 HBYZ(t � 1)to send value E to all the (nt � 1) receivers. We can apply the induction hypothesis toconclude that every fault-free receiver gets wj = R(�) or Vd from each fault-free receiverj (using HBYZ(t� 1)), and E or Vd from each manifest-faulty receiver. If a receiver, sayA, obtains (t + u � m)-HVOTE in step 3 equal to � 6= Vd, then by Lemma 4, � must beequal to R(�). In other words, each fault-free receiver must obtain (t + u � m)-HVOTEequal to either R(�) or Vd. Therefore, each fault-free receiver will agree on � or Vd (note:UnR(Vd) = Vd). Thus, the lemma is proved. 2Lemma 9 Given a conforming system, algorithm HBYZ(m) satis�es condition D.4 provideda � u and nm > a+ 2m+ 2s+ c.Proof: In this proof, we assume that m > 1. The proof for m = 1 is analogous.Condition D.4 assumes that the sender is faulty. Therefore, at most (u � 1) of thereceivers are arbitrary-faulty. As at most (u � 1) receivers are arbitrary-faulty, at least(nm � u) are not arbitrary-faulty.In step 2 of HBYZ(m), each receiver sends a value to all the (nm � 1) receiversusing HBYZ(m � 1). Thus, at the end of step 2 each receiver obtains (nm � 1) values.5Recollect that, by de�nition of a manifest-fault, any message transmitted by a manifest-faulty receiver,e�ectively, contains value E. 19



As nm�1 = nm � 1 > a + m + 2s + c + (m � 1) and a � u, by Lemma 8, we know thatHBYZ(m� 1) satis�es condition D.3. Therefore, the values obtained from manifest-faultyreceivers must be E or Vd. Also, as a receiver j sends R(vj) in step 2 using HBYZ(m� 1)and R(vj) 6= E;8vj, by Lemma 8, the value obtained from a fault-free receiver cannot be E.Assume that, in step 3, receivers A and B obtain (m+u�m)-HVOTE (i.e. u-HVOTE)equal to � and  respectively, where � 6= , Vd 6= � and Vd 6= . (Also, by de�nition ofHVOTE, � 6= E and  6= E.)De�ne the following:Za (Zb) = set of receivers from which A (B) obtained value � () using HBYZ(m� 1).Sa (Sb) = set of symmetric-faulty receivers from which A (B) obtained E but B (A) did not.Aa (Ab) = set of arbitrary-faulty receivers from which A (B) obtained E but B (A) did not.Ca (Cb) = set of manifest-faulty receivers from which A (B) obtained E but B (A) obtained Vd.Sab = set of symmetric-faulty receivers from which both A and B obtained value E.Aab = set of arbitrary-faulty receivers from which both A and B obtained value E.Cab = set of manifest-faulty receivers from which both A and B obtained value E.Z�a = Za [ Sa [Aa [ AabZ�b = Zb [ Sb [ Ab [ Aabea (eb) = number of E values (among the nm � 1 values) obtained by A (B)This implies that,6 by De�nition 2, jZaj � (nm�1)�jZaj�ea+u. This, in turn, impliesthat jZ�a j � (nm�1)�jZaj+ jSaj+ jAaj+ jAabj� ea+u. Now, as E is not obtained from anyfault-free receiver, ea = jSaj+ jAaj+ jCaj+ jSabj+ jAabj+ jCabj. Therefore, jZ�aj � (nm�1)�jZaj�jSabj�jCaj�jCabj+u. As jZ�a j � jZaj, we have, jZ�a j � (nm�1�jSabj�jCaj�jCabj+u)=2.By following similar step, we also have, jZ�b j � (nm�1�jSabj�jCbj�jCabj+u)=2. Adding theinequalities for jZ�a j and jZ�b j, we get jZ�aj+ jZ�b j � nm�1�jSabj�(jCaj+2jCabj+ jCbj)=2+u.Now, jCaj+ jCabj � c and jCbj+ jCabj � c. Therefore, jZ�a j+ jZ�b j � nm � 1 � jSabj � c+ u.As a � u, we have jZ�a j+ jZ�b j � nm � 1� jSabj � c+ a:As the sender in HBYZ(m) is arbitrary-faulty and total number of arbitrary-faults isa, (a � 1) receivers are arbitrary-faulty. Also, as c nodes are manifest-faulty, (nm � 1 � c)6Recall that receiver A obtained u-HVOTE equal to �, in step 3 of HBYZ(m).20



receivers are not manifest-faulty, and (nm�c�a) receivers are either fault-free or symmetric-faulty. Also, observe the following:1. As noted earlier, in step 2, either E or Vd is obtained from each manifest-faulty receiver.Therefore, Za and Zb cannot contain any manifest-faulty receivers. Therefore, Z�a andZ�b also do not contain any manifest-faulty receivers.2. Za\Zb cannot contain a fault-free receiver, because (i) Lemma 8 holds for BYZ(m�1),and (ii) we assumed that � 6= , Vd 6= � and Vd 6= . This, in turn, implies that Z�a\Z�bcannot contain a fault-free receiver.3. By an argument similar to (2) above, Za \ Zb cannot contain a symmetric-faultyreceiver. Therefore, as Sa\Sb = ;, Z�a\Z�b cannot contain a symmetric-faulty receiver.4. (Z�a [ Z�b ) \ Sab = ;, i.e., no receivers in Sab belong to Z�a [ Z�b .5. As Aab � Z�a \ Z�b , an arbitrary-faulty receiver may belong to both Z�a and Z�b . (Rec-ollect that a� 1 receivers are arbitrary-faulty.)Observations 2 and 3 imply that sets Z�a and Z�b do not have any fault-free or symmetric-faulty nodes in common. Thus, by the above observations, we have jZ�a j+ jZ�b j � 2(a� 1) +(nm � c� a� jSabj) = nm � c� jSabj+ a� 2, i.e.,jZ�a j+ jZ�b j < nm � 1� jSabj � c+ aBut this inequality contradicts one derived earlier. Therefore, our assumption that � 6= ,Vd 6= � and Vd 6=  must be incorrect. In other words, at least one of the following must betrue: � = , or Vd = � or Vd = . Thus, the lemma is proved. 2Theorem 1 Given u � m and a system with N nodes the following conditions hold forHBYZ(m). 21
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