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Abstract—This paper addresses a distributed throughput-
optimal CSMA/CA for wireless ad hoc networks, which is
called the preemptive CSMA/CA. It achieves the optimality in a
completely distributed fashion, even with discrete backoff time,
non-zero carrier sense delay and data packet collisions. The
algorithm is derived from the extension of Q-CSMA by Ni, Bo
and Srikant to include collisions and is similar to the Jiang and
Walrand’s CSMA/CA. The analysis on the preemptive CSMA/CA
provides with the understanding on the relationship among the
throughput-optimal CSMA/CAs in the literature.

I. INTRODUCTION

Since Tassiulas and Ephremides first introduced the no-
tion of throughput-optimality in [1] for wireless multi-hop
networks, there has been a large body of research on the
scheduling algorithms that achieve the optimality. Due to the
complexity of the max-weight algorithm proposed in [1], sev-
eral low-complexity alternatives such as maximal scheduling
and greedy maximal scheduling have been studied, but in
general these algorithms can only achieve a fraction of the
capacity region (e.g., [2]).

Recently with a surprise, it has been shown that a sim-
ple carrier sense multiple access with collision avoidance
(CSMA/CA) algorithm can achieve the throughput-optimality
in a completely distributed fashion [3]–[8]. The main leverage
is to utilize the Glauber dynamics to solve a maximum weight
independent set problem in a distributed manner.

However, the algorithms achieve the optimality with ideal
assumptions such as continuous-time backoff time, zero carrier
sense delay and no collision. These assumptions basically
eliminate the loss of the CSMA/CA algorithms, which is not
the case in practice.

This paper addresses a distributed, throughput-optimal
CSMA/CA for wireless ad hoc networks, which is named as
the preemptive CSMA/CA. It is completely distributed in a
sense that it only requires carrier sense results from the outside
of a link (or a node) and it runs with low complexity. At the
same time, our CSMA/CA is practical enough to achieve the
optimality even with discrete backoff time, non-zero carrier
sense delay and data packet collisions.

In essence, our preemptive CSMA/CA resembles the
CSMA/CAs in [8] and [4]. We basically extends Q-CSMA
in [4] to include data packet collisions. Our CSMA/CA works
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similarly to the CSMA/CA in [8], but the analytic framework
is mostly based on that used in [4]. As a result, the analysis
is simpler and the algorithm covers a wider class of weight
functions embedded in the CSMA/CA than that in [8]. More-
over, it directly uses the queue length information, which is
also inherited from Q-CSMA.

Our preemptive CSMA/CA in fact bridges the gap between
two throughput-optimal CSMA/CAs, which has not been well
understood. Furthermore, this work identifies the key strategy
for the throughput-optimality, which can also be observed in
the ideal CSMA/CAs in [3], [5]–[7].

II. MODEL

We model a single channel wireless ad hoc network by a
graph G = (V,E) where V is the set of nodes and E is the set
of links. For ease of exposition, we describe the model with
links (link-centric model), which can be easily transferred to
a node-centric model. This graph based model is also used
in [3]–[8].

The access to the wireless medium is time slotted, which
is indexed by nonnegative integer t. For a given time t, we
denote a link rate by a vector x(t) of which elements are
xi(t), i ∈ E. Without loss of generality, these link rates are
all normalized and are either 0 or 1 for simplicity. Thus, a
link rate x(t) also represents a schedule. With a little abuse
of notation, we also use x(t) as a set and write i ∈ x(t)
if xi(t) = 1. We consider one-hop traffic only, but one may
want to incorporate a congestion control algorithm to ours for
multi-hop networking as done in [3].

We model the interference in the wireless networks by
conflict relationships among the links. Let us denote the set
of conflict links of a link i as Ci, i ∈ E. When the link
i transmits, if one or more links in the set Ci are active at
the same time, the transmission will fail. Furthermore, it is
assumed that the conflict relationship is symmetric; if i ∈ Cj ,
then j ∈ Ci. A feasible schedule x is defined as a schedule that
has no active link in the set of conflict links (

∑
j∈Ci

xj = 0 for
i ∈ x). All feasible schedules comprise the feasible schedule
set, which is denoted by F .

Carrier sense is modeled to be performed at the end of each
slot in our model as depicted in Figure 1.1 The sensing lasts

1The model is just for analytical convenience since it is equivalent to have
carrier sense performed at the beginning of each slot.



Time slot  t-1

DATA

t t+1
A
C
K

DATA

Idle

t+2 t+3

Preemptive Transmission

DATA

Busy Busy Busy IdleIdle

DATA

Fig. 1. Carrier sense model. Carrier sense observes the later part of a time
slot. Under time line, it is shown the results of the carrier sense given to one
of conflict neighbors of the transmitting link.

for α duration and its result is used to decide if the immediate
next slot is allowed to be accessed. The current transmitting
link thus may fill up the slot if it wants to use the next one and
leaves the last α duration idle if not. For instance, in Figure 1,
time slot t+ 1 is completely filled with an acknowledgement
(ACK) packet from the receiver and slots t + 2 and t + 3
are filled by longer data packets, all for the preemptive
medium access. We define as a preemptive transmission the
transmission that preempts the medium access of others by
making the α duration busy. By definition, the first packet
in success at time t + 1 in Figure 1 is not included in the
preemptive transmission. It is important to notice that our
carrier sense model can detect the preemptive transmission
only, which is also true for CSMA/CAs in [4], [8].

We assume that the carrier sense works ideally, which
means that a link i detects any transmission by any link in
Ci whenever there is. Such ideal carrier sense eliminates the
possibility of collisions once the link preempts the access of
the conflict neighbors.

The capacity region of a network is the set of all arrival
rates λ for which there exists a scheduling algorithm that can
stabilize the queues in the network. The capacity region can
be characterized as follows (e.g., [1]):

Λ = {λ | ∃µ ∈ Co(F) : 0 ≤ λ < µ}, (1)

where Co(F) is the convex hull of the set of feasible
schedules in F . When dealing with vectors, inequalities are
interpreted component-wise. A scheduling algorithm is said to
be throughput-optimal if it can keep the network queues stable
for all arrival rates in the capacity region Λ.

Notations: We use ‖ · ‖ for usual Euclidean norm operation.
An over-bar on a variable indicates complementary probability,
for example, āi = 1 − ai. We shorten the notation such as
P (a|b) := P (a(t) = a|b(t) = b) and P (a|a′) := P (a(t) =
a|a(t− 1) = a′).

III. PREEMPTIVE CSMA/CA

We introduce the preemptive CSMA/CA in this section. It
is called the preemptive CSMA/CA as the defining feature
is that some links preempt the medium access of others. The
preemption for the medium access is to the extent of one link’s
conflict link set, Ci by our carrier sense model.

The preemptive CSMA/CA can be implemented in a com-
pletely distributed way. The only information that needs to
come from the outside of a link is the result of the carrier
sense operation.

Algorithm 1 Preemptive CSMA/CA for link i at time t
1: /* Ber(p): Bernoulli trial with prob. p */
2:
3: If

∑
j∈Ci

uj(t− 1) = 0 . Ideal carrier sense
4: If ui(t− 1) = 1
5: xi(t)← Ber(pi)
6: Else
7: xi(t)← Ber(ai)
8: Else
9: xi(t) = 0

10:
11: Transmit packets by schedule x(t)
12: Update

ui(t) =

{
1 if xi = 1 and successful,
0 otherwise.

(2)

A. Operations

The details of the proposed CSMA/CA are shown in Algo-
rithm 1. The function Ber(p) returns 1 with probability p and
0 with 1− p.

By the preemptive CSMA/CA in Algorithm 1 a link main-
tains two internal state variables: transmission schedule xi(t)
and preemption ui(t). At the beginning of a time slot, a link
refers to the report from the carrier sense at the previous slot.
If there was no preemptive transmission from other conflict
neighbors (Line 3), the link observes ui(t− 1) to see if it has
been preempting the medium access of its conflict neighbors.
If so, it selects with probability pi that it continue to preempt
the access of other links by another transmission (Line 4–5).
Thus, the preemptive transmission will be finished only when
the link i decides so, and no interference can be generated
to the preemptive transmission under the ideal carrier sense
assumption.

When the link that has preempted others decides not to
preempt them any more by drawing 0 on Line 5, the slot t is
left idle since all neighbors will not access the medium due
to its carrier sense busy status at time t − 1. Essentially, the
idle slot is used to signal other neighbor links in conflict that
the medium is released from the preemption.2

By Line 7, the links that have not preempted the neighbors
(ui(t−1) = 0) compete only when the medium in the previous
slot was free from the preemptive transmission (Line 3). If
free, the links set xi(t) = 1 with probability ai.

After xi(t)’s are updated, the links in the networks transmit
a packet and/or observe the medium according to xi(t). If
xi(t) = 1, a packet is transmitted, and the transmission result
is monitored to update ui(t) by (2). If the transmission is
successful, which is typically informed by an ACK packet
reception, it obtains the preemption for the medium access by
having ui(t) = 1. Otherwise, it observes the medium to see
if the medium access to the next slot is preempted by one of
others.

2The idle slot would have been used by the link that has preempted the
others, but we do not allow it in this paper for analytical tractability.
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Fig. 2. An example of the progress of internal variables by the preemptive
CSMA/CA. The left is the conflict graph of the considered network. The gray
boxes indicate the packets in collision.

Figure 2 shows one example of the schedules by the
preemptive CSMA/CA. The network has three links, A, B
and C where A and B conflict and so do B and C. In the
first slot link A and B transmit at the same time, resulting in a
collision. In the second slot, link B succeeds in a transmission
and thus, preempts the medium access of links A and C at
the third slot. In the fourth slot, link B decides not to preempt
others any more, leaving that slot idle. As discussed, that idle
slot cannot be used by other links, either. In the fifth slot, link
A and C transmit and succeed together as they do not conflict
with each other.

B. Dynamics

We model the dynamics of Algorithm 1 by a discrete-time
Markov chain (DTMC). For ease of derivation, instead of x(t),
the set of links that are in collision is now part of the state
variables, which is denoted by y(t).

In our interference model, the collision happens when two
transmissions are within each other’s conflict link set. For y
to be valid, for link i ∈ y, there should be at least one link in
transmission in Ci. This condition is specified with an aid of
the following function:

φy(i) :=

{
0 if

∑
j∈Ci

yj 6= 0,
1 otherwise,

(3)

by which the condition for y is that for i ∈ y, φy(i) = 0.
For a given u(t), there could be multiple y(t) that lead to

the same u(t) by definition. Denote by Yu|u′ the set of y(t)’s
that result in the same u for the given u′. The definition of
the set is

Yu|u′ := {y ⊆ E \ (u ∪ u′) \ Cu∪u′ : φy(i) = 0 for i ∈ y} ,

where Cu∪u′ := ∪j∈(u∪u′)Cj . The definition is by the fact
that the preemptive transmission is not collided (interfered)
by the transmissions of conflict neighbors in the ideal carrier
sense case. The set includes the empty set by definition, and
it is the only element if either u or u′ is maximal. Note that
the order of u′ and u is not relevant. We use notation Yu∪u′

for Yu|u′ to explicitly show this property.

With the set Yu∪u′ , the transition probability can be written
with respect to u(t) as

P (u|u′) =
∑

y∈Yu∪u′

P (u,y|u′), (4)

which gives the DTMC with state u(t) only. The dynamics
of this Markov chain is described by the following transition
probability.

Lemma 1. The transition probability from u′ to u is

P (u|u′) =∏
i∈u∩u′

pi
∏

j∈u′\u

p̄j
∏

l∈u\u′
al

∏
k∈E\Cu′
\(u∪u′)

āk
∑

y∈Yu∪u′

∏
y∈y

ay
āy

(5)

if u ∪ u′ ∈ F , and P (u|u′) = 0 otherwise.

Proof: By (2), u and u′ are all in F . Suppose u ∪ u′ /∈ F .
Then, there exists at least one link i which satisfies u′i = 1 and∑
j∈Ci

u′j = 0 at time t − 1 and ui = 0 and
∑
j∈Ci

uj = 1
at time t. However, this cannot happen since there always
exists one idle slot when a preemptive transmission finishes
(u′i = 1 → ui = 0). Thus, to have a non-zero transition
probability, u ∪ u′ ∈ F should hold.

Now suppose u ∪ u′ ∈ F . The transition probability can be
calculated from P (u,y|u′) by (4). P (u,y|u′) is

P (u,y|u′) =
∏

i∈u∩u′
pi

∏
j∈u′\u

p̄j
∏

l∈(u\u′)∪y

al
∏

k∈E\Cu′
\y\(u∪u′)

āk,

(6)
which is derived by the following case-by-case analysis.
• Consider the links that have sent packets with the preemp-

tion in time slot t− 1. Here are two possible transitions.
– Link i ∈ u ∩ u′: it transmits a packet with probabil-

ity pi at time t, which is due to Line 5.
– Link j ∈ u′ \ u: it does not transmit at time t with
p̄j probability, giving up the preemption.

• Links that have sensed no preemption transmission in
time slot t − 1 may transmit packets at time t with al
probability. There are two possible subsets of such links.

– Link l ∈ y: it experiences collision at time t.
– Link l ∈ u \ u′: it successfully transmits its packet

at time t, obtaining the preemption.
• Consider the links that we have not examined, which are

all silent at time t.
– Link m ∈ Cu′ : it should be silent at time t since

it sensed the preemptive transmission at the end of
time slot t−1, which corresponds to

∏
m∈Cu′

1. For
simplicity, we do not include this in (6).

– Link k ∈ E \ Cu′ \ y \ (u ∪ u′): it is silent in time
slot t with āk probability.

By multiplying the probabilities for transitions, we have (6).
Putting (6) into (4), we have (5). This completes the proof.

One may find (5) complicated, but it is simply a product
of access probabilities from different sets of links. Two access



probabilities, pi and ai, are used in the preemptive CSMA/CA,
and thus, the links in a network are classified into four groups
that are associated with pi, p̄i, ai and āi, respectively.

The stationary distribution of the chain is easily obtained
by the reversibility of the chain as follows.

Lemma 2. The DTMC u(t) is reversible, which has the
following unique stationary distribution: if u ∈ F

π(u) =
1
z

(∏
i∈u

ai
p̄i

)( ∏
k∈Cu

āk

)
, (7)

where z is the normalization constant, and π(u) = 0 other-
wise.

Proof: We are going to show that the transition probability
(5) and the given stationary distribution (7) satisfy the detailed
balance equation. Suppose u ∪ u′ ∈ F . Otherwise, P (u|u′) =
0 and the detailed balance equation holds trivially.

The set (u ∪ u′) and Cu′ are disjoint by the condition
u ∪ u′ ∈ F . Also, from the definition of Yu∪u′ , (u ∪ u′) and
y are disjoint, and so do Cu′ and y. These facts allow us to
rewrite the transition probability (5) as

P (u|u′) =
∏

i∈u∩u′
pi

(∏
j∈u′∪u p̄j∏
j∈u p̄j

)(∏
l∈u′∪u al∏
l∈u′ al

)

·

(∏
k∈E\(u∪u′) āk∏

k∈Cu′
āk

) ∑
y∈Yu∪u′

∏
y∈y

ay
āy
. (8)

The detailed balance equation, π(u′)P (u|u′)
= π(u)P (u′|u), is checked by considering

P (u|u′)
P (u′|u)

=

∏
j∈u′ p̄j

∏
l∈u al

∏
k∈Cu

āk∏
j∈u p̄j

∏
l∈u′ al

∏
k∈C′u

āk
(9)

=
1
z

∏
j∈u

1
p̄j

∏
l∈u al

∏
k∈Cu

āk
1
z

∏
j∈u′

1
p̄j

∏
l∈u′ al

∏
k∈C′u

āk
=

π(u)
π(u′)

, (10)

where (9) is obtained by canceling out the product of pi’s
and the summations over Yu∪u′ . The cancelation of the
summations is due to Yu∪u′ = Yu′∪u, which is true by
definition. Thus, the detailed balance equation is satisfied by
the stationary distribution given by (7). Therefore, the chain is
indeed reversible, and (7) is the unique stationary distribution.

The stationary distribution (7) is compact and illustrates
the steady state behavior very well; a successful transmission
happens only when conflict neighbors are all silent, and such
transmission is initiated by the medium access with probability
ai. Once the transmission is successful, obtaining the preemp-
tion, the preemptive transmission continues for 1/p̄i time slots
in a mean sense without interruption. Notice that 1/p̄i is the
mean of the geometric distribution with success probability p̄i.

C. Performance

For the set of fixed ai and pi over time, the preemptive
CSMA/CA would reach the steady state described by (7). If
the probabilities ai and pi dynamically change in the transient

state, the performance analysis becomes challenging due to
the memory across time slots. Instead of the transient state
analysis, the following assumption is made.

Assumption 1 (Time-Scale Separation). The chain u(t) im-
mediately converges to the steady state in every time slot.

This is essentially to separate the time-scale of the dynamics
of scheduling and queue lengths; by the assumption, the
queue length varies slow enough for the Markov chain to
see no change of it until the chain converges to the steady
state. Recently, the assumption has been relaxed for the ideal
CSMA/CA cases in [6], [7].

Under this assumption, the preemptive CSMA/CA can be
proven to be throughput-optimal with the properly chosen pi
and ai. The proof relies on the result in [9]. Denote qi as the
queue length of a link i and vector q as the lengths of all
links. Consider to use weights that are function of the queue
lengths, wi(qi(t)) where wi : [0,∞] → [0,∞] are functions
that satisfy the following conditions:

1) wi(qi) is a nondecreasing, continuous function with
limqi→∞ wi

(
qi(t)

)
=∞.

2) Given any α1 > 0, α2 > 0 and 0 < ε < 1, there exists
β <∞, such that for all qi > β and i ∈ E, we have

(1− ε)wi(qi) ≤wi(qi − α1)
≤ wi(qi + α2) ≤ (1 + ε)wi(qi). (11)

Theorem 1 (Eryilmaz, Srikant and Perkins [9]). For a
scheduling policy, if given any ε and δ, 0 < ε, δ < 1, there
exists a β > 0 such that: in any time slot t, with probability
greater than 1−δ, the scheduling algorithm chooses a schedule
x(t) ∈ F that satisfies∑

i∈x(t)

wi(t) ≥ (1− ε) max
x∈F

∑
i∈x

wi(t) (12)

whenever ‖q(t)‖ > β. Then the scheduling policy is
throughput-optimal.

Using this, the throughput-optimality of the preemptive
CSMA/CA is proven. First notice that u(t) is the links
in successful transmissions at time t. Before the proof,
we denote a maximum weight schedule by u∗(t) :=
arg maxu∈F

∑
i∈u wi(t) for a given time t.

Proposition 1. Choose p̄i = 1
ewi(t) where wi(t) is an appro-

priate function of the queue length as discussed in the above.3

Given ε, 0 < ε < 1 and time t, define

U(t) :=

u ∈ F :
∑
i∈u

wi(t) < (1− ε)
∑

i∈u∗(t)

wi(t)

 , (13)

and

ξ(t) :=
∑

u∈U(t)

∏
i∈u ai

∏
j∈Cu

āj∏
i∈u∗(t) ai

∏
j∈Cu∗(t)

āj
(14)

3Choosing pi = ewi(t)

1+ewi(t) gives the same result with a similar proof.



for time t. Choose ai such that ξ(t) < ξmax for all t for some
0 < ξmax <∞. For such pi and ai, the preemptive CSMA/CA
with the ideal carrier sense is throughput-optimal.

Proof: Define π(U) :=
∑

u∈U π(u). We will show that
there exists β such that π(U) < δ whenever ‖q‖ > β. For
simpler notation, we use wu :=

∑
i∈u wi.

If we choose p̄i = 1
ewi(t) , the stationary distribution is

π(u) =
1
z

∏
i∈u

1
p̄i
· ai

∏
j∈Cu

āj =
1
z

∏
i∈u

ewi · ai
∏
j∈Cu

āj , (15)

and

π(U) =
1
z

∑
u∈U

ewu

∏
i∈u

ai
∏
j∈Cu

āj


<

1
z
e(1−ε)wu∗

∑
u∈U

∏
i∈u

ai
∏
j∈Cu

āj

 (16)

where ewu for u ∈ U(t) is upper bounded by e(1−e)wu∗ by
the definition of U(t).

A lower bound for z is

z =
∑
u∈F

ewu

∏
i∈u

ai
∏
j∈Cu

āj

 > ewu∗
∏
i∈u∗

ai
∏

j∈Cu∗

āj ,

(17)
which gives

π(U) <
e(1−ε)wu∗

ewu∗

∑
u∈U

∏
i∈u ai

∏
j∈Cu

āj∏
i∈u∗ ai

∏
j∈Cu∗

āj

= e−εwu∗ ξ(t) < e−εwu∗ ξmax (18)

Thus, to have π(U) < δ,

wu∗ >
1
ε

(
log

1
δ

+ log ξmax

)
(19)

should satisfy for any given δ and ε, when ‖q‖ > β for some
β > 0. Therefore, there exists a large wu∗ that satisfies (19)
as wi is a continuous, non-decreasing function of the queue
length with lim‖q‖→∞ wu∗ = ∞, and thus, π(U) < δ. By
Theorem 1, the preemptive CSMA/CA with the ideal carrier
sense is throughput-optimal if p̄i = 1/ewi(t) and ai’s are
chosen such that ξ(t) < ξmax for all t.

The key strategy for the throughput-optimality of the pre-
emptive CSMA/CA is to lengthen the duration of the preemp-
tive transmission proportional to the queue lengths. As the
network gets more congested, such duration becomes longer
and longer, and the loss by CSMA/CA such as collisions and
backoff is relatively small. Thus, in the extremely congested
state, the loss is virtually zero and the optimality is achieved.

Our preemptive CSMA/CA explicitly takes into account the
loss by random backoff and data packet collisions. The loss
by non-zero time for the carrier sense, which corresponds
to α out of each preemptive transmission, is not considered
for establishing the optimality. However, as the preemptive
transmission gets longer, the fraction α to the length of the

preemptive transmission becomes negligible. Moreover, the
time may be used to receive an ACK packet from the receiver
as shown in Figure 1 and 2 in practice.

The range of possible wi(t) is quite wide for the throughput-
optimality. One may want to wi = log log qi so that the time-
scale separation assumption is virtually satisfied, which is the
choice made in [6], [7] for their CSMA/CAs to prove the
optimality without the assumption. Such choice, however, may
yield a poor delay performance.

The choice of the access probability ai, which is used
for non-preemptive transmission, also determines the delay
performance while any choice such that ξ(t) < ξmax for all
t achieves the throughput-optimality. We conjecture that there
is ai that minimizes the delay because too small ai incurs a
large delay and too large ai makes frequent collision happen.
The characterization of the delay performance with respect to
ai is out of scope of this paper.

IV. DISCUSSION

The key strategy for the throughput-optimality in our
CSMA/CA is the preemptive transmission. This section
compares our CSMA/CA with other throughput-optimal
CSMA/CAs and explains that the same strategy is shared by
all throughput-optimal CSMA/CAs.

A. Relationship to Other CSMA/CAs

1) Q-CSMA [4]: Q-CSMA proposed in [4] has control and
data phases in a synchronized manner. Q-CSMA updates the
schedule for each slot at random as the preemptive CSMA/CA
does, but only a feasible set of links consider to update their
schedules whereas the preemptive CSMA/CA lets all links
consider to update theirs. This feasibility condition is ensured
by the control packet exchanges in the control phase. Due to
this fact, Q-CSMA requires to have the control phase, which
is part of the loss of achievable throughput. On the other
hand, the condition enables Q-CSMA to avoid any data packet
collisions in the data phase.

Our preemptive CSMA/CA eliminates the need for the
control phase, which basically relaxes the feasibility condition
for the links to update their schedules in Q-CSMA. In the
preemptive CSMA/CA, all links in the network consider to
update their schedules according to the carrier sense results,
which results in data packet collisions with non-zero prob-
ability. Despite the collisions, the throughput-optimality is
still achievable. However, to prevent the loss from being
significant, we have to introduce another access probability
ai in addition to pi.

2) CSMA/CA in [8]: Jiang and Walrand proposed a
CSMA/CA in [8] of which behavior more resembles that of
IEEE 802.11. With their CSMA/CA, the links will access the
medium with probability ai whenever there is no transmission
from their conflict link sets. The scheme to achieve the
throughput-optimality in Jiang’s CSMA/CA is to lengthen the
data packet duration exponentially proportional to the estimate
of the queue length dynamics.



Regarding the loss by randomness, Jiang’s CSMA/CA
experiences collisions due to random access, which is the
key difference from Q-CSMA. The loss by the collisions is,
however, minimized by employing a small control packet that
precedes a data packet. Also, it is implicitly assumed that
carrier sense reports a positive at the beginning of the slot
without a sensing delay if there is an ongoing successful
transmission in the current slot. Our preemptive CSMA/CA
is without such assumption, having one idle slot that follows
each preemptive transmission. The idle slots are due to the
scheduling decisions made in a per slot basis.

Except for the subtle difference, our preemptive CSMA/CA
works similarly to Jiang’s. Despite the similarities, however,
ours has its own unique values over Jiang’s CSMA/CA. The
proof for the optimality is simpler and covers a fairly large
class of distributions for the packet lengths as well as the
exponentially distributed packet lengths (see the conditions
for wi(t) in Section III-C). Also, the preemptive CSMA/CA
directly uses queue length information rather than estimating
arrival and service rates as Jiang’s CSMA/CA. Furthermore,
our CSMA/CA relates Jiang’s CSMA/CA to Q-CSMA of
which relationship has not been well understood.

B. Strategy in Common for Optimality

As discussed, the preemptive CSMA/CA achieves the
throughput-optimality by successful transmissions of which
duration is proportional to the queue length. The carrier sense
prevents the other conflict neighbors from interfering with the
preemptive transmission. As the network gets more congested,
such transmission becomes extremely long and thus, the loss
from random access such as collision and backoff becomes
negligible. In sum, the key for the optimality is the preemptive
transmission.

This preemptive transmission is also observed in other
CSMA/CAs. In Q-CSMA, a transmission schedule is kept
to be the same until the current transmitting link decides to
finalize its back-to-back transmission. Jiang’s CSMA/CA pre-
determines the transmission length exponentially proportional
to the estimate of the queue length dynamics, and so does the
ideal continuous-time CSMA/CA [3]–[6]. Therefore, the same
strategy to achieve the throughput-optimality is shared by all
throughput-optimal CSMA/CAs.

V. NUMERICAL RESULTS

In Figure 3, we show the expected queue lengths by the
preemptive CSMA/CA in two different network topologies
with 8 links: one is a fully connected network (complete
conflict graph) and the other is a ring network (ring conflict
graph). The load intensity is defined as the ratio of arrival
rate to the capacity of each network. The queue lengths of
all links are averaged out in the figure since they all have the
same dynamics. The weight function wi = qi is used for the
simulations.

Two observations are made from Figure 3. First, the pre-
emptive CSMA/CA in any case stabilizes the networks with
the load intensity close to one. However, the expected queue
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Fig. 3. Queue lengths with varying load intensity and access probability ai.

lengths become larger as the intensity gets closer to one. Sec-
ond, the access probability ai which has a wide range of choice
for the throughput-optimality gives a radically different delay
performance according to the conflict graph of the network.
For both ai = 0.2 and 0.8, the ring network experiences
a similar amount of delay. In contrast, the fully connected
network shows a big difference in delay according to ai.

VI. CONCLUSION

We have proposed the preemptive CSMA/CA, which is
completely distributed and throughput-optimal. The algorithm
is obtained by extending Q-CSMA which has no data collision.
Although the preemptive CSMA/CA resembles the CSMA/CA
from [8], we leverage a different analytical framework to
show the throughput-optimality, which is mainly due to [4].
This approach leads us to well understand the relationship of
two CSMA/CAs and further most of all throughput-optimal
CSMA/CAs in the literature; the key for the optimality is
to have the preemptive transmission of which duration is
proportional to the queue lengths, and it gives the throughput-
optimality even with the loss by the random nature of
CSMA/CA.
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