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Abstract— We consider a networked system in which each
component (node) iteratively exchanges information with its
neighbors according to an arbitrary, possibly directed topology.
Based on an iterative exchange of (local and possibly directed)
information, we develop an average-consensus distributed al-
gorithm that is robust to unreliable (packet-dropping) com-
munication links. By introducing virtual nodes, we show that
the execution of the proposed algorithm is mathematically
equivalent to a finite inhomogenous Markov chain. Then, by
using coefficients of ergodicity, we can prove convergence of
the robust distributed algorithm to the exact average, in the
presence of packet drops and under a very broad set of
conditions.

I. INTRODUCTION

We consider a system in which each node exchanges

information with its neighbors to compute, in a distributed

fashion, the average of the nodes’ initial values. The commu-

nication links can be asymmetric (i.e., node j might be able

to send information to node i, but not necessarily vice-versa).

The links may also be lossy or unreliable. The behavior of

unreliable links may be modeled using two different models:

1. Common knowledge: This models assumes that if a

message sent over link (i, j) from node i to node j is lost due

to link unreliability, then nodes i and j are both guaranteed to

be immediately aware of the message loss. Such assumptions

have been used in prior work (e.g., [1]).

2. Incomplete knowledge: This model assumes that if a a

message loss occurs over link (i, j), then node i does not

immediately become aware of the message loss. We assume

this model in our work. Such a scenario occurs in wireless

networks when an unreliable “broadcast” is performed as

a way of delivering an identical message to all neighbors.

Some receivers will not receive the message due to trans-

mission errors; however, the sender does not know which

receivers lost the message. Acknowledgment mechanisms

can be incorporated to improve reliability; however, this may

not be feasible if communication links are asymmetric.

Consensus over unreliable links has received attention

recently [2], [3], [4]. The work in [2] assumes that the graph

describing the communication network is undirected and,

when a communication link fails, it affects communication

in both directions, but nodes can detect it and compensate for

it. The work in [3] does not require the graph describing the
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communication network to be undirected and proposes two

compensation methods to account for communication link

failures; however, the value to which nodes reach consensus

is not necessarily the average. The authors in [4] propose

a strategy that corrects the errors in the state iteratively

calculated by each node by incorporating corrective itera-

tions; they also use retransmissions as a way to reduce the

detrimental impact of link unreliability.

II. PRELIMINARIES

A. Network Model

The system is synchronous, and consists of a network of

m nodes, V = {1, 2, . . . ,m}, each of which has some initial

value Vi, i = 1, 2, . . . ,m, (e.g., a temperature reading). The

nodes need to reach consensus on the average of these initial

values, specifically,

∑
m
j=1

Vj

m
. A directed link (j, i) is said to

“exist” if transmissions from node j may possibly (but not

necessarily always) be received by node i. Let E denote the

set of all directed links that exist in the network. Note that

(i, i) ∈ E , ∀i ∈ V . Then, graph G = (V , E) represents

the network connectivity. Define Ii = {j | (j, i) ∈ E} and

Oi = {j | (i, j) ∈ E}. The outdegree of node i, denoted

as Di, is the size of set Oi, thus, Di = |Oi|. Note that

i ∈ Ii and i ∈ Oi, ∀i ∈ V . We assume that graph G =
(V , E) is strongly connected. To make the discussion precise,

we assume that a link (i, j) exists (i.e., (i, j) ∈ E) if each

transmission from i is successfully received by node j with

probability qij (0 < qij ≤ 1). We assume that successes

of transmissions on different links are independent of each

other; also, successes of different transmissions on any given

link are independent of each other.

B. Ratio-Consensus Algorithm

Next, we summarize a consensus algorithm, which is

similar to the push-sum algorithm in [5] and the weighted

consensus algorithm in [6]. We rename the algorithm as

“ratio consensus” since its output is obtained as the ratio

of the state of two concurrent iterative computations. The

ratio consensus algorithm is designed to perform correctly

when all the links are perfectly reliable in each time slot.

Each node i maintains at iteration k state variables yk[i]
and zk[i]. At each time step k, each node i updates its state

variable as follows:

yk[i] =
∑

j∈Ii

yk−1[j] /Dj , k ≥ 1, (1)

zk[i] =
∑

j∈Ii

zk−1[j] /Dj , k ≥ 1, (2)



where y0[j] = Vj and z0[j] = 1, for j ∈ V . (It is

also possible to use this structure to compute an arbitrary

weighted average of the inputs.)

To facilitate implementation of the above iterations, at

time step k, each node i broadcasts a message containing

values yk−1[i]/Di and zk−1[i]/Di to the nodes in Oi, and

awaits reception of a similar message from each node in

Ii. Provided that all the links are always reliable, each

transmission by each node j will be received by all the nodes

in Oj . When node i has received, from each node j ∈ Ii, a

message (consisting of yk−1[j]/Dj and zk−1[i]/Dj) at step

k, node i performs the above update of its state variables (by

simply summing the corresponding values).

The above two iterations are represented in matrix notation

below, where yk and zk are row vectors of size m, and M
is an m×m matrix, such that M [i, j] = 1/Di if j ∈ Oi and

0 otherwise.

yk = yk−1 M, k ≥ 1 , (3)

zk = zk−1 M, k ≥ 1. (4)

Each node i calculates, at each time step k, the ratio vk[i] =
yk[i]
zk[i]

. For the transition matrix M , M [i, j] ≥ 0, and, for all

i,
∑

jM [i, j] = 1. Any matrix that satisfies these conditions

is said to be row stochastic. In this regard, it has been shown

in [7] that vk[i] asymptotically converges to the average of

the elements of y0, provided that M is primitive1 and row

stochastic. That is, if M is a primitive row stochastic matrix,

then limk→∞ vk[i] =
∑

j
y0[j]

m
, ∀i ∈ V , where m is the

number of elements in vector y0.

III. ROBUST RATIO-CONSENSUS ALGORITHM

In this section, we present a ratio-consensus algorithm

that is robust in the presence of link unreliability. The

proposed algorithm is obtained by augmenting the two

iterations presented above with additional state. We first

introduced the robust algorithm in [8]; the main contribution

of this paper is to show that, by representing the behavior

of the unreliable links using “virtual nodes”, and suitably

rewriting the iteration dynamics, the resulting system is

mathematically equivalent to a finite inhomogenous Markov

chain. Then, by using a coefficients of ergodicity approach, a

commonly used method, we can prove convergence of robust

consensus. In [8], we focused on analyzing the dynamics of

the first and second moments of the two iterations under the

assumption that all communication links drop packets with

equal probabilities; we recently extended those results to the

case when packet-drop probabilities are heterogeneous [9].

As before, each node maintains state variables yk[i] and

zk[i]. Additional state maintained at each node will be

defined soon. Also as before, y0[j] = Vj and z0[j] = 1, for

1 ≤ j ≤ m. For convenience of the presentation, we assume

that Vj ≥ 0 for all j. (The assumption of non-negative Vj
can be relaxed easily.)

1A finite square matrix A is said to be primitive if for some positive
integer p, Ap > 0, that is, Ap[i, j] > 0, ∀i, j.

Iterative computation is performed in parallel to maintain

state variables yk and zk both. For brevity, we will focus

on presenting the iterations for yk, but iterations for zk are

analogous, with the difference being in the initial state.

To aid our presentation, let us introduce the notion of

“mass.” The initial value y0[i] at node i is to be viewed as

its initial mass. If node i sends a message v to another node

j, that can be viewed as a “transfer” of an amount of mass

equal to v to node j. With this viewpoint, it helps to think

of each step k as being performed over a nonzero interval

of time. Then, yk[i] should be viewed as the mass at node

i at the end of time step k (which is the same as the start

of step k + 1). Thus, during step k, each node i transfers

(perhaps unsuccessfully, due to unreliable links) some mass

to nodes in Oi, the amount being a function of yk−1[i]. The

mass yk[i] is the accumulation of the mass that i receives in

messages from nodes in Ii during step k.

Now,
∑

i y0[i] is the total mass in the system initially.

When iteration (3) is performed on perfectly reliable links,

then for all iterations k,
∑

i yk[i] =
∑

i y0[i]. That is,

provided that the links are always reliable, the total mass

in the system remains constant. However, if a message v
sent by node i is not received by some node j ∈ Oi, then

the mass in that message is “lost,” resulting in reduction of

the total mass in the system.

Our robust algorithm is motivated by the desire to avoid

the loss of mass in the system, even in the presence of

unreliable links. At each step k, each node i wants to transfer

µk[i] = yk−1[i]/Di amount of mass to each node in Oi. For

this purpose, node i broadcasts message µk[i] to its neighbors

in Oi. However, this message may not be received by all the

nodes in Oi. Additional state is maintained at each node

to allow the algorithm to perform correctly despite the link

unreliability. The additional state is used to emulate a “virtual

buffer” for each directed link. As will become clearer later,

the “virtual buffer” can be seen as holding mass that may

have otherwise been lost due to link unreliability; the mass

in the virtual buffer is “released” to the intended receiver

whenever the corresponding link operates reliably. These

virtual buffers are then represented by adding “virtual nodes”

to the original network, to obtain an “augmented network”.

The idea of augmenting the communication graph has also

been used to study the impact of communication delays (e.g.,

[10], [11], [12]).

A. Proposed Robust Ratio-Consensus Algorithm

Presently we only discuss the iteration for state yk (similar

steps are performed for state zk as well). The modified

scheme has the following features:

• Instead of transmitting message µk[i] = yk−1[i]/Di at

step k, each node i broadcasts at step k a message with

value
∑k

j=1 µj [i], denoted as σk[i]. Thus, σk[i] is the

total mass that node i wants to transfer to each node in

Oi through the first k steps.

• Each node i maintains, in addition to state variable yk[i],
also a state variable ρk[j, i] for each node j ∈ Ii. As



seen below, ρk[j, i] keeps track of the mass received by

node i from node j.

We define σ0[i] = 0, ∀i ∈ V and ρ0[i, j] = 0, ∀(i, j) ∈ E .

The operations performed at node i in step k ≥ 1 are:

• Compute

σk[i] = σk−1[i] + yk−1[i]/Di (5)

and broadcast σk[i] to nodes in Oi.

• For each (j, i) ∈ E : If message σk[j] is received by i
on link (j, i) in step k, then

ρk[j, i] = σk[j]

else

ρk[j, i] = ρk−1[j, i]. (6)

• Compute

yk[i] =
∑

j∈Ii

(ρk[j, i]− ρk−1[j, i]). (7)

Intuition: When link (j, i) ∈ E is reliable, ρk[j, i] becomes

equal to σk[j]. This can be viewed equivalent to node i
receiving any new mass node j wants to send at step k, as

well as any mass previously stored in the “virtual buffer” for

link (j, i). On the other hand, when link (j, i) is unreliable,

then ρk[j, i] remains unchanged from the previous iteration,

since no mass is received from j. It follows that, the total

new mass received by node i at step k, either from node j
directly or via buffer (j, i), is given by ρk[j, i]− ρk−1[j, i],
which explains (7).

As presented above, σ and ρ variables increase monoton-

ically with time. This is undesirable in practice; however,

node i can communicate intermittently to node j (over

a multi-hop path if needed) the amount of mass it has

received from j through a certain number of iterations. This

information can then be used to “reset” the state maintained

for the corresponding virtual buffer, avoiding the monotonic

increase in the state value. We omit the details here for

brevity.

IV. INHOMOGENEOUS MARKOV CHAIN FORMULATION

The matrix representation is obtained by observing an

equivalence between the iteration in Section III-A, and

another iterative algorithm (to be introduced soon) defined

on an augmented network alluded to previously. The vector

state of the augmented network consists of n = m + |E|
elements, corresponding to the mass held by each of the m
nodes, and the mass held by each of the |E| virtual buffers:

these n entities are represented by as many nodes in the

augmented network.

Let us call the augmented network Ga. With a slight abuse

of notation, let us denote by yk the state of the nodes in

the augmented network Ga. The vector yk for Ga is an

augmented version of yk for G. In addition to yk[i] for

each i ∈ V , the augmented yk vector also includes elements

yk[(i, j)] for each (i, j) ∈ E , with y0[(i, j)] = 0. Due to the

manner in which the yk[i]’s are updated, yk[i], i ∈ V , are

identical in the original network and the augmented network;

therefore, we do not distinguish between them. We next

rewrite the algorithm in (5)–(7) into matrix form:

yk = yk−1Mk, (8)

for appropriate row-stochastic matrices Mk (to be defined

soon) that might vary as the algorithm progresses (but nev-

ertheless take values from a finite set of possible matrices).

Let us define an indicator variable Xk[j, i] for each link

(j, i) ∈ E at each time step k as follows:

Xk[j, i] =

{

1, if link (j, i) is reliable at time step k,

0, otherwise.

(9)

We will now reformulate the iteration (5)–(7) and show how

it can be described in matrix form as in (8), where the matrix

transition matrix Mk is a function of the indicator variables

defined in (9). First, by using the indicator variables at time

step k, as defined in (9), it follows from (6) that

ρk[j, i] = Xk[j, i]σk[j] + (1−Xk[j, i])ρk−1[j, i]. (10)

Now, for k ≥ 0, define νk[j, i] = σk[j] − ρk[j, i] (thus

ν0[j, i] = 0). Then, it follows from (5) and (10) that

νk[j, i] = (1 −Xk[j, i])

(

yk−1[j]

Dj

+ νk−1[j, i]

)

, k ≥ 1.

(11)

Also, from (5) and (10), it follows that (7) can be written as

yk[i] =
∑

j∈Ii

Xk[j, i]

(

yk−1[j]

Dj

+ νk−1[j, i]

)

, k ≥ 1. (12)

At every step k that the link (j, i) is not reliable, it is easy

to see that the variable νk[j, i] increases by an amount equal

to the amount that node j wished to send to node i, but

i never received due to the link failure. Similarly, at every

instant k that the link (j, i) is reliable, the variable νk[j, i]
becomes zero and its value at slot k− 1 is received by node

i as can be seen in (12). Thus, from (11) and (12), we can

think of the variable νk[j, i] as the state of a virtual node

that buffers the mass that node i does not receive from node

j every time the link (j, i) fails. It is important to note that

the νk[j, i]’s are virtual variables (no node in V computes νk)

that just result from combining, as explained above, variables

that the nodes in V compute. The reason for doing this is so

that the resulting model is equivalent to an inhomogeneous

Markov chain. This can be easily seen by stacking up (12) for

all nodes indexed in V , i.e., the computing nodes, and (11)

for all virtual buffers (j, i), with (j, i) ∈ E , and rewriting

the resulting expressions in matrix form, from where the

expression in (8) results, as elaborated in the next section.

Thus, the state vector yk used in the analysis below is

obtained by stacking the original y states for the nodes in

V , and ν states for the virtual buffers. Next, we discuss the

structure of the Mk’s and obtain their entries by inspection

of (11) and (12).



1) Structure of Mk: Let us first define the entries in row

i of matrix Mk that corresponds to i ∈ V . For (i, j) ∈ E ,

there are two possibilities: Xk[i, j] = 0 or Xk[i, j] = 1. If

Xk[i, j] = 0, then the mass µk[i] = yk[i]/Di that node i
wants to send to node j is added to the virtual buffer (i, j).
Otherwise, no new mass from node i is added to buffer (i, j).
Therefore,

Mk[i, (i, j)] = (1−Xk[i, j])/Di. (13)

The above value is zero if link (i, j) is reliable at step k,

and 1/Di otherwise. Similarly, it follows that

Mk[i, j] = Xk[i, j]/Di, (14)

which is zero whenever link (i, j) is unreliable at step k, and

1/Di otherwise. Observe that for each j ∈ Oi,

Mk[i, j] +Mk[i, (i, j)] = 1/Di, (15)

with, in fact, one of the two quantities zero and the other

equal to 1/Di. For (i, j) /∈ E , it naturally follows that

Mk[i, j] = 0. Similarly, Mk[i, (s, r)] = 0, whenever i 6= s
and (s, r) ∈ E .

Now define row (i, j) of matrix Mk, which describes how

the mass of the virtual buffer (i, j), for (i, j) ∈ E , gets

distributed. When link (i, j) works reliably at time step k
(i.e., Xk[i, j] = 1), all the mass buffered on link (i, j) is

transferred to node j; otherwise, no mass is trasferred from

buffer (i, j) to node j. These conditions are captured by

defining Mk entries as follows:

Mk[(i, j), j] = Xk[i, j], (16)

Mk[(i, j), (i, j)] = 1−Xk[i, j]. (17)

Also, for obvious reasons,

Mk[(i, j), p] = 0, ∀p 6= j, p ∈ V , (18)

Mk[(i, j), (s, r)] = 0, ∀(i, j) 6= (s, r), (s, r) ∈ E . (19)

Clearly, all the entries of the row labeled (i, j) add up to 1,

which results in Mk being row stochastic for all k ≥ 1.

2) Properties of Mk: Let us denote the set of all pos-

sible instances (depending on the values of the indicator

variables Xk[i, j], (i, j) ∈ E , k ≥ 1) of matrix Mk as M.

The matrices in the set M have the following properties:

(M1) The set M is finite. (M2) Each matrix in M is a

finite-dimensional square row stochastic matrix. (M3) Each

positive element of any matrix in M is lower bounded by

a positive constant. Let us denote this lower bound as c;
due to the manner in which matrices in M are constructed,

we can define c to be the positive constant obtained as

c = mini,j,M |M∈M,M [i,j]>0 M [i, j] = mini∈V 1/Di.

(M4) The matrix Mk, k ≥ 0, may be chosen to be any

matrix M ∈ M with a nonzero probability; the choice of

the transition matrix at each time step is independent and

identically distributed (i.i.d.) due to the assumption that link

failures are independent (between nodes and time steps).

(M5) There exists a finite positive integer l such that, for

any i ∈ V , it is possible to find l matrices in M (possibly

with repetition) such that their product (in a chosen order) is

a row stochastic matrix with the column that corresponds to

node i containing strictly positive entries; l is independent

of node i.
Property (M5) states that, for each i ∈ V , there exists a

matrix T ∗
i , obtained as the product of l matrices in M that

has the following properties:

T ∗
i [j, i] > 0, ∀ j ∈ V , (20)

T ∗
i [(j1, j2), i] > 0, ∀ (j1, j2) ∈ E . (21)

Property M5 follows from the fact that graph G, and therefore

augmented graph Ga, is strongly connected.

[6] also allows for time-varying transition matrices, but

requires the matrices to have nonzero diagonals. Our robust

algorithm also results in time-varying transition matrices, but

not all the diagonal entries in these matrices are necessarily

nonzero.

V. ERGODICITY ANALYSIS OF PRODUCTS OF Mk’S

We will next analyze the ergodic behavior of the forward

product Tk = M1M2 . . .Mk = Πkj=1Mj , where Mj ∈
M, ∀j = 1, 2, . . . , k. Informally defined, weak ergodicity

of Tk obtains if the rows of Tk tend to equalize as k →
∞. In this work, we focus on the weak ergodicity notion,

and establish probabilistic statements pertaining the ergodic

behavior of Tk. The analysis builds upon a large body of

literature on products of nonnegative matrices [13], [14],

[15].

A. Results Pertaining Coefficients of Ergodicity [14]

A coefficient of ergodicity of a matrix A characterizes how

different two rows of A are. For a row stochastic matrix A,

coefficients of ergodicity δ(A) and λ(A) are defined as [14]:

δ(A) := max
j

max
i1,i2

|A[i1, j]−A[i2, j]|, (22)

λ(A) := 1−min
i1,i2

∑

j

min(A[i1, j], A[i2, j]). (23)

Proposition 1: For any p square row stochastic matrices

A1, A2, . . . Ap−1, Ap, [14]

δ(A1A2 · · ·Ap−1Ap) ≤
(

Πp−1
i=1 λ(Ai)

)

δ(Ap)

≤ Πpi=1λ(Ai). (24)

Definition 1: A matrix A is said to be a scrambling

matrix, if λ(A) < 1 [13].

Note that, if any one column of a row stochastic matrix A
contains only nonzero entries, then A must be scrambling.

B. Ergodicity Analysis of Iterations of the Robust Algorithm

We next analyze the ergodic properties of the products of

matrices that result from each of the iterations comprising our

robust algorithm. Let us focus on just one of the iterations,

say yk, as the treatment of the zk iteration is identical. As

described in Section IV, the progress of the yk iteration can

be recast as an inhomogeneous Markov chain

yk = yk−1Mk, k ≥ 1, (25)



where Mk ∈ M, ∀k. As already discussed, the sequence of

Mk’s that will govern the progress of yk is determined by

communication link reliability. Defining Tk = Πkj=1Mj , we

obtain:

yk = y0M1M2 · · ·Mk = y0Π
k
j=1Mj

= y0Tk, k ≥ 1. (26)

Tk, a product of row stochastic matrices, is row stochastic.

By convention, Π0
i=kMi = I for any k ≥ 1 (I denotes the

n × n identity matrix). Recalling the constant l defined in

(M5), define Wk as follows,

Wk = Πklj=(k−1)l+1Mj, k ≥ 1, Mj ∈ M, (27)

Lemma 1: There exist constants α, β, and w where 0 <
α < 1, 0 ≤ β < 1 and w > 0, such that, with probability

greater than (1− αk), δ(Tk) ≤ βk for k ≥ 8l/w.

The proof, which uses properties (M4) and (M5), is omitted

for lack of space (see [16]).

Lemma 2: δ(Tk) converges almost surely to 0.

Proof: For k ≥ 8l/w, from Lemma 1, we have that

Pr{δ(Tk) > βk} ≤ αk, 0 < α < 1, 0 ≤ β < 1. Then,

it is easy to see that
∑

k Pr{δ(Tk) > βk} ≤ 8l/w +
∑

k α
k < ∞. Then, by the first Borel-Cantelli lemma,

Pr{the event that δ(Tk) > βk occurs infinitely often} = 0.

Therefore, δ(Tk) converges to 0 almost surely.

VI. CONVERGENCE OF PROPOSED ROBUST ALGORITHM

By defining zk in an analogous way as we defined state yk
in Section IV, the robustified version of the ratio-consensus

algorithm in (3)–(4) can be described in matrix form as

yk = yk−1 Mk, k ≥ 1, (28)

zk = zk−1 Mk, k ≥ 1, (29)

where Mk ∈ M, k ≥ 1, y0[i] ≥ 0, ∀i, z0[i] ≥ 0, ∀i, and
∑

j z0[j] > 0, and y0[(i, j)] = z0[(i, j)] = 0, ∀(i, j) ∈ E .

The same matrix Mk is used at step k of the iterations in

(28) and (29), however, Mk may vary over k. Recall that

yk and zk in (28) and (29) have n elements, but only the

first m elements correspond to computing nodes in Ga; the

remaining entries in yk and zk correspond to virtual buffers.

Due to the manner in which matrices Mk are defined,

the Mk matrices do not necessarily have all the diagonal

elements positive (in particular, see (17)). The analysis below

shows that the ratio algorithm achieves asymptotic consensus

correctly even if diagonals of the transition matrices (Mk’s)

are not always strictly positive. Aside from this important

difference, our proof technique for the augmented network

is similar to the one in [6].

The goal of the algorithm is for each computing node to

obtain a consensus value defined as

π∗ =

∑

j∈V y0[j]
∑

j∈V z0[j]
=

∑

j∈V Vi

m
. (30)

Note that y0 and z0 state for each virtual buffer is 0, and,

therefore, it does not affect π∗. To achieve the above goal,

each node i ∈ V calculates

πk[i] =
yk[i]

zk[i]
, (31)

whenever the denominator is large enough, i.e., whenever

zk[i] ≥ µ, (32)

for some constant µ > 0 to be defined later. We will

show that, for each i = 1, 2, . . . ,m, the sequence πk[i] thus

calculated asymptotically converges to the desired consensus

value π∗. To show this, we first establish that (32) occurs

infinitely often, thus computing nodes can calculate the ratio

in (31) infinitely often. Then, we will show that as k goes

to infinity, the sequence of ratio computations in (31) will

converge to the value in (30).

The convergence when
∑

j y0[j] = 0 can be shown

trivially. So let us now consider the case when
∑

j y0[j] > 0,

and define new state variables ỹk and z̃k for k ≥ 0 as follows:

ỹk[i] =
yk[i]

∑

j y0[j]
, ∀i, (33)

z̃k[i] =
zk[i]

∑

j z0[j]
, ∀i. (34)

Thus, ỹ0 and z̃0 are defined by normalizing yk and zk. It

follows that ỹ0 and z̃0 are stochastic row vectors. Also, since

our transition matrices are row stochastic, it follows that ỹk
and z̃k are also stochastic vectors for all k ≥ 0.

We assume that each node knows a lower bound on
∑

j z0[j], denoted by µz . In particular, since z0[j] = 1 for

j ∈ V , define µz = 1. (When the algorithm is used to

compute weighted average, z0[j] will be typically positive

for all j, and this value can be used by node j as the lower

bound.) We also assume that there exists an upper bound,

say µy , on
∑

j y0[j]. Define

µ =
µz c

l

n
. (35)

where c was defined in property (M3). As time evolves, each

node i ∈ V will calculate a new estimate of the consensus

value whenever zk[i] ≥ µ. The next lemma establishes that

nodes can perform this calculation infinitely often.

Lemma 3: Let Ti = {τ1i , τ
2
i , · · · } denote the sequence of

time steps when node i updates its estimate of the consensus

using (31), and obeying (32), where τ ji < τ j+1
i , j ≥ 1.

The sequence Ti contains infinitely many elements with

probability 1.

Proof: To prove the lemma, it will suffice to prove that

for infinitely many values of k, zk[i] > µ, with probability 1.

Assumptions (M1)-(M5) imply that each matrix Wj , j ≥ 1
(defined in (27)) contains a strictly positive column corre-

sponding to index i ∈ V with a nonzero probability, say

γi > 0. Also, the choice of Wk1 and Wk2 is independent of

each other for k1 6= k2. Therefore, the second Borel-Cantelli

lemma implies that, with probability 1, for infinitely many

values of j, Wj will have the i-th column strictly positive.

Since the nonzero elements of each matrix in M are all

greater than or equal to c, c > 0 (by property M3), and



since Wj is a product of l matrices in M, it follows that all

the nonzero elements of each Wj are lower bounded by cl.

Consider only those j ≥ 1 for which Wj contains positive

i-th column. As noted above, there are infinitely many such

j values. Now, z̃jl = z̃(j−1)l Wj . z̃k is a stochastic vector.

Thus, for any k ≥ 0,
∑

i z̃k[i] = 1 and, at least one of the

elements of z̃(j−1)l must be greater than or equal to 1/n.

Also, all the elements in columns of Wj indexed by i ∈ V are

lower bounded by cl (recall that we are now only considering

those j for which the i-th column of Wj is positive). This

implies that, z̃jl[i] ≥ cl/n, thus zjl[i] ≥
(

∑

j z0[j]
)

cl/n,

from where it follows that zjl[i] ≥ µz c
l/n. Then, since

infinitely many Wj’s contain a positive i-th column (with

probability 1), by (35), we finally obtain that zjl[i] ≥ µ
holds for infinitely many j with probability 1. Thus, with

probability 1, the set Ti = {τ1i , τ
2
i , · · · } contains infinitely

many elements, for any i ∈ V .

Theorem 1: Let πi[t] denote node i’s estimate of the

consensus value calculated at time τ ti . For each node i ∈ V ,

with probability 1, πi[t] converges to π∗ =
∑

j
yj [0]∑

j
zj [0]

.

Proof: Note that the transition matrices Mk, k ≥
1, are randomly drawn from a certain distribution. By an

“execution” of the algorithm, we will mean a particular

instance of the Mk sequence. Thus, the distribution on Mk’s

results in a distribution on the executions. Lemma 2 implies

that Pr {limk→∞ δ(Tk) = 0} = 1. Together, Lemmas 2 and

3 imply that, with probability 1, for a chosen execution, (i)

for any ψ > 0, there exists a finite kψ such that, for all

k ≥ kψ, δ(Tk) < ψ, and (ii) there exist infinitely many

values of k ≥ kψ such that zk[i] ≥ µ.

Consider any k ≥ kψ such that zk[i] > µ. Since δ(Tk) ≤
ψ, the rows of matrix Tk are “within ψ” of each other.

Observe that ỹk is obtained as the product of stochastic row

vector ỹ0 and Tk. Thus, ỹk is in the convex hull of the rows

of Tk. Similarly z̃k is in the convex hull of the rows of Tk.

Therefore, the j-th elements of ỹk and z̃k are within ψ of

each other, for all j. Therefore,
∣

∣

∣

∣

ỹk[i]

z̃k[i]
− 1

∣

∣

∣

∣

≤
ψ

z̃k[i]
(36)

⇒

∣

∣

∣

∣

∣

yk[i]

zk[i]
−

∑

j y0[j]
∑

j z0[j]

∣

∣

∣

∣

∣

≤
ψ

∑

j y0[j]

zk[i]
by (33), (34)

⇒

∣

∣

∣

∣

∣

yk[i]

zk[i]
−

∑

j y0[j]
∑

j z0[j]

∣

∣

∣

∣

∣

≤
ψ µy
zk[i]

since
∑

j y0[j] ≤ µy

⇒

∣

∣

∣

∣

∣

yk[i]

zk[i]
−

∑

j y0[j]
∑

j z0[j]

∣

∣

∣

∣

∣

≤
ψ µy
µ

. (37)

Given any ǫ > 0, let us choose ψ = ǫµ/µy. Then (37)

implies that

∣

∣

∣

yk[i]
zk[i]

−
∑

j
y0[j]

∑
j
z0[j]

∣

∣

∣
≤ ǫ whenever k ≥ kψ and

k ∈ Ti. Therefore,
yk[i]
zk[i]

for k ∈ Ti converges to

∑
j y0[j]∑
j z0[j]

in the limit. This result holds with probability 1, since

conditions (i) and (ii) above hold with probability 1.

VII. CONCLUDING REMARKS

The paper considers an average consensus algorithm that

performs correctly despite link unreliability. We model the

behavior of the lossy links using virtual nodes, which allows

us to rewrite the algorithm dynamics as an inhomogeneous

Markov chain. We then use results involving coefficients of

ergodicity to prove the convergence of the algorithm.
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