
Capacity of Byzantine Agreement

(Preliminary Draft – Work in Progress)

Nitin Vaidya and Guanfeng Liang
Department of Electrical and Computer Engineering, and

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

nhv@illinois.edu, gliang2@illinois.edu

Technical Report

January 15, 2010

Caveat: This report represents work-in-progress, and provides some of our early results
on the topic. A more complete version of this report, with additional results not presented
in this draft, and improved description of the algorithms and analysis, will be released later
this year. This draft version contains known problems with clarity/readability and the de-
scriptions are incomplete/imprecise in some places. The draft is being released nevertheless
to seek early feedback from other researchers.

1 Introduction

In this report, we consider the problem of maximizing the throughput of Byzantine agree-
ment. Byzantine agreement is a classical problem in distributed computing, with initial
solutions presented in the seminal work of Pease, Shostak and Lamport [33, 22]. There has
also been more recent work on designing multicast algorithms that can survive Byzantine
attacks (e.g., [13]). Section 2 summarizes the past work related to this report.

Many variations on the Byzantine agreement problem have been introduced in the
past, with some of the variations also called consensus. We will use the original definition of
Byzantine agreement in our discussion. In particular, we consider a network with one node
designated as the sender or source, and other nodes designated as the peers. The goal here

1

is for all the fault-free nodes to “agree on” the value being sent by the sender. In particular,
the following conditions must be satisfied:

• Agreement: All fault-free peers must agree on an identical value.

• Validity: If the sender is fault-free, then the value greed on by the peers must be
identical to sender’s value.

Once a node agrees on a certain value, it cannot change its decision. It is customary to also
include a termination condition [1], which states that the peers must eventually agree on a
value. We will revisit the notion of termination below.

Our goal in this work is to design algorithms that can improve throughput of agree-
ment. The notion of throughput here is similar to that used in the networking/communications
literature on unicast or multicast traffic. We now define agreement throughput (or through-
put of agreement) somewhat more formally.

When defining throughput, the “value” referred above in the definition of agreement
is viewed as an infinite sequence of bits. At each peer, we view the agreed information as
being represented in an array of infinite length. Initially, none of the bits in this array at
a peer have been agreed upon. As time progresses, the array is filled in with agreed bits.
In principle, the array may not necessarily be filled sequentially. For instance, a peer may
agree on bit number 3 before it is able to agree on bit number 2. Once a peer agrees on
bit number i in the array, that agreed bit cannot be changed. In the discussion below, we
assume that agreement algorithm begins execution at time 0. The system is assumed to be
synchronous.

Throughput: For defining throughput, we consider the largest prefix of the array at all
the peers that has been agreed upon. In particular, suppose that at time t, all the peers
have agreed upon bits 0 through b(t), and at least one peer has not yet agreed on bit number
b(t) − 1, then the largest agreed prefix at time t has size b(t). Agreement throughput T is
defined as

T = lim
t→∞

b(t)

t
(1)

Although we assume that the information granularity is a bit, the definition can be modified
trivially for symbols of larger size.

We do not explicitly define a termination condition. However, achieving non-zero
throughput implicitly requires that agreement be eventually achieved on an infinite prefix
of the information. In the above definition, we also do not restrict the delay in reaching the
agreement. However, the definition may be modified to include additional constraints.

2

Capacity: Capacity of agreement in a given network, for a given sender and a given set of
peers, is defined as the supremum of all achievable throughputs of agreement between the
given sender and the peers.

Note that, in general, not all nodes in the network may be peers. That is, the network
may include nodes that are neither sender nor peers. Such nodes may assist in achieving
agreement.

The above definitions of throughput and capacity can be extended to other forms of
agreement or consensus as well. For instance, consensus is often defined as agreeing on an
identical value as a function of the values being proposed by all the peers (so, all the peers
act as “senders”). In particular, if all the fault-free peers propose an identical value, then
the agreed value should be this particular value. It should be easy to see that the above
definition of throughput can be extended to this scenario as well. It should also be easy to
see that the actual throughput for the different versions of consensus or agreement may be
quite different.

The above definitions can be extended to the more general problem of function com-
putation, where the agreed value may be an arbitrary function of the values proposed by
the various nodes, and also to the notion of approximate agreement (in case of approximate
agreement, one can trade-off throughput with “accuracy” of agreement).

While all of these issues are quite interesting, in this report, we consider the simplest
instance of the agreement problem, as elaborated later.

2 Related Work

Research in three areas is most relevant to this report:

• Distributed fault-tolerant computing: There has been significant research on tolerating
Byzantine failures, theory (e.g., [23, 29, 1]) and practice (e.g., [5, 3, 4, 19]) both.
Perhaps closest to our context is the work on continuous consensus [32, 8, 9, 31] and
multi-Paxos [21, 5] that considers agreement on a long sequence of values. For our
analysis of throughput as well, we will consider such a long sequence of values. In fact,
[5] presents measurements of throughput achieved in a system that uses multi-Paxos.
However, to the best of our knowledge, the past work on multi-Paxos and continuous
consensus has not addressed the problem of optimizing throughput of agreement while
considering the capacities of the network links.

In general, most research on Byzantine agreement tends to focus on other metrics, such
as the number of “rounds” of messages exchanged (as a measure of delay incurred),
or the total number of messages, or number of bits that need to be exchanged to

3

achieve agreement. The last metric (number of bits) may seem related to the notion of
capacity or throughput, however, such prior work disregards the capacity of the links
over which the data is being carried. The link capacity constraints intimately affect
capacity of agreement.

The work on the relationship between error-correcting codes and asynchronous con-
sensus algorithms (e.g., [11]) is also related to our work. In particular, our agreement
algorithm can be viewed as using a form of error correcting code.

• Multicast using network coding: While the early work on fault tolerance typically
relied on replication [7, 6] or source coding [36] as mechanisms for tolerating packet
tampering, network coding has been recently used with significant success as a mecha-
nism for tolerating attacks or failures. In traditional routing protocols, a node serving
as a router, simply forwards packets on their way to a destination. With network
coding, a node may “mix” (or code) packets received from different neighbors [25], and
forward the coded packets (for instance, data in a forwarded packet may be obtained
as bit-wise exclusive OR of the data in packets received from two neighbors). This
approach has been demonstrated to improve throughput, being of particular benefit
in multicast scenarios [25, 17, 10]. The problem of multicast is related to agreement.
A similarity between this report and the work on multicasting with network coding is
the use of capacity or throughput as the metric of interest. The significant difference
between the two is that the multicast problem formulation assumes that the source
of the data is always fault-free. As a simple but illuminating example of the impact
of this difference, consider a source node S connected to two nodes A and B with a
point-to-point link of capacity R each. In this three node network, it should be easy
to see that multicast capacity of R is achievable; however, throughput of agreement in
presence of a Byzantine node failure cannot exceed zero.

There has been much research on multicast with network coding in presence of a
Byzantine attacker (e.g., [38, 2, 13, 14]). Some of these solutions use carefully designed
digital signatures [15, 39, 40, 24] or hash functions [20, 12], which allow intermediate
nodes to verify the integrity of coded packets. Non-cryptographic solutions have also
been proposed (e.g., [13, 14]), which exploit redundancy in the network such that
the destination(s) can correct some packet tampering and recover correct information.
However, most of the past networking coding literature on Byzantine attackers has
considered a somewhat different Byzantine attacker model – in particular, it essentially
assumes that an attacker is constrained only by the total rate at which it can tamper
packets in the network, not by which links these packets belong to. The node-level
fault model in our work assumes that a faulty or compromised node can only tamper
packets on its outgoing links (but on these links, all packets may be tampered). There
is some recent research on using this model to study capacity of unicast/multicast
traffic [26, 27, 18, 16]. It can be shown that, even for unicast traffic, presence of

4

Byzantine node-level adversary, may require the use of non-linear coding strategies
[28].

It should also be easy to see that the problem of Byzantine agreement is strictly
harder than that of multicasting with a fault-free sender. The problem of multicast in
presence of Byzantine node failures in general networks remains open at this time. In
this report, we make progress on the problem of agreement by considering the simplest
network topology that allows agreement to be achieved. It is hoped that the insights
gained from this work will be useful in more general networks.

• System-level diagnosis: The work on system-level diagnosis considers a directed diag-
nosis graph (or a test graph), wherein each directed edge represents a test: in essence,
when node X tests node Y, it may declare Y as faulty or fault-free, with a faulty tester
providing potentially erroneous test outcomes. The seminal work of Preparata, Metze
and Chien [34] identified conditions under which it is possible to correctly identify the
faulty nodes in some networks. Much research has followed further developing the
ideas introduced in [34], as summarized in [30]. The notion of diagnosis graph used in
our algorithm is borrowed from the system-level diagnosis literature – it is also similar
to the notion of conflict graph used in prior work on consensus [37].

3 Four Node Network

In this report, we primarily focus on a rather simple network consisting of just four nodes,
with the goal of tolerating at most one Byzantine fault. It is known that tolerance of
one Byzantine fault requires that the network contain at least four nodes [22] with node
connectivity at least three.

In particular, consider a synchronous system consisting of four nodes, namely, S, A,
B and C, with node S acting as the sender, and nodes A, B and C being the peers. At most
one of these four nodes may be faulty.

We assume that each pair of nodes is connected by a pair of directed point-to-point
links. Each point-to-point link has a certain link capacity, defined as the maximum rate at
which information may be transmitted over that link.1

Figure 1 shows the four-node network. The labels near the various links denote the
link capacities. Without loss of generality, we assume that k ≤ l ≤ m.

1In some instances, it is not necessary to have links in both directions between certain pairs of nodes.
For brevity, we ignore this possibility here, and consider the case where links exist in both directions. In
fact, we assume that a non-zero link capacity is available for all directed links.

5

S

A

B

C

p

q

r

s

t

u

k
l

m
v

w x

Figure 1: Four node network: Labels denote the link capacities. Without loss of generality,
we assume that k ≤ l ≤ m.

4 Byzantine Agreement Algorithm

4.1 Link Capacity Constraints

We will present a Byzantine algorithm for the network in Figure 1. The algorithm can
achieve throughput arbitrarily close to R bits/unit time, provided that the following sets of
conditions are true.

• If one of the peers is removed from the network, then these conditions must be true
for the min-cut from S to a remaining peer to be at least R:

k + l ≥ R (2)

l + m ≥ R (3)

m + k ≥ R (4)

p + k ≥ R (5)

q + k ≥ R (6)

6

r + l ≥ R (7)

s + l ≥ R (8)

t + m ≥ R (9)

u + m ≥ R (10)

The above conditions are necessary for agreement throughput of R to be achieved.
When one of the peers is faulty, it may not communicate with the other nodes at
all, while all the remaining nodes behave correctly. Thus, the agreement throughput
cannot exceed the max-flow (or min-cut) from S to any peer, with one of the other
peers removed from the network.

• These conditions must hold for the max-flow to one of the peers from the other two
peers, with sender S removed, to be at least R.

p + q ≥ R (11)

r + s ≥ R (12)

t + u ≥ R (13)

The above conditions are necessary for throughput of R to be achieved. To see this,
we consider two scenarios.

Scenario 1: Suppose that node A misbehaves essentially by pretending that links
SA and AS are broken (thus, it will not transmit packets to S, and any packets it would
otherwise have to sent to S are simply dropped). Thus, no communication takes place
on link SA. Aside from this, node A behaves correctly. Since S is fault-free, nodes B
and C must agree on the information sent by S.

Scenario 2: Now consider a scenario in which node S is faulty (so node A is fault-
free). Node S misbehaves only by pretending that links SA and AS are broken.

In essence, both scenarios are equivalent to the scenario in which links SA and AS
are broken. Thus, from the perspective of B and C, these two scenarios are not
distinguishable. Thus, in both scenarios, nodes B and C agree on identical information.

In scenario 2, node A is, in fact, fault free. So it must also agree on the information
agreed on by nodes B and C. The only way for node A to learn this information is to
receive it from nodes B and C. Thus, the agreement throughput is upper bounded by
the min-cut from {B,C} to A with node S removed.

Similar arguments can be made with nodes B or C replacing node A in the above
scenarios.

7

• If the source and a peer is removed, for the “undirected min-cut” between the remaining
two peers (with the links being treated as undirected) to be R, these conditions must
be true:

p + r ≥ R (14)

s + t ≥ R (15)

q + u ≥ R (16)

All the conditions in the third set of constraints are not necessary for achieving agree-
ment. This can be demonstrated by constructing networks wherein agreement can be
reached even if some of these conditions are not true. These conditions, together with
the other constraints, are sufficient to achieve agreement at rates approaching R, as
demonstrated by the existence of an agreement algorithm under these conditions.

• We also impose the constraint that the capacity of each directed link is more than 0.
This allows each node to transmit a fixed number of bits to another node within a
finite interval of time. In general, non-zero capacity is not necessary for all links in
the network. However, the algorithm presented in this report requires this condition
to be true.

The proposed agreement algorithm can achieve agreement throughput approaching
R bits/unit time, where the unit of time is defined to be of a suitable size. Note that if the
unit of time is increased (say, from 100 ms to 1 second), then the numerical value of R will
also increase proportionately.

To simplify the discussion below, unless otherwise specified, we will normalize all
quantities by R. Thus, the goal of the algorithm is to achieve normalized throughput
approaching 1. Similarly, link capacity k for link SA should be viewed as being normalized,
with the actual capacity in bits/unit time being kR. We will also normalize the packet sizes
by R. For instance, when we say that the (normalized) packet size is 1 − m, the actual
packet size in bits is (1 − m)R – note that, m here is also normalized with R.

Note that in inequalities 2 through 13, R should be replaced 1 to obtain the inequal-
ities for normalized quantities.

Observe that if any of the inequalities above holds, then the inequality also holds if
we replace a link rate, such as k by minimum(1, k). Thus, in the algorithm design, we will
assume that each link rate is at most 1.

The agreement algorithm has three different modes of operation. We will number
these modes as I, II, III, IV. As seen later, repeated (and pipelined) execution of our algo-
rithm below can be used to achieve the desired throughput. The network starts in mode I,

8

and may change modes over time as the algorithm is executed multiple times. The mode
number does not decrease over time2).

• Mode I: Fault-free: The network starts operation in this mode.

• Mode II: Failure known to be within a set containing two peers.

• Mode III: Failure known to be within a set containing a peer and the source.

• Mode IV: Source node known to be faulty. and source interchangeably.

The 1 unit of data is divided into 6 parts or “packets”, named D through H . For the
packet sizes below to be meaningful, we assume that k ≤ l ≤ m ≤ 1.

• D of size k + l − 1,

• E of size m − l,

• F of size 1 − m,

• G of size m − l,

• H of size 1 − m, and

• I of size l − k.

The packet sizes are normalized by R. Thus, normalized packet size (l − k) really means
(l − k)R bits. We assume that with appropriate scaling factors, the normalized packet sizes
can all be turned into integers (this is true if k, l, m are rational numbers). Note that the
normalized packet sizes add up to 1.

In the algorithm presented below, packets G and I of size m−l and l−k, respectively,
are treated identically, and as such, could be replaced by a single packet of size m− k. The
above notation is residual from a prior version of the agreement algorithm presented here.

To aid the discussion, Figure 2 shows some of the link capacity constraints listed
above. The figure also shows some packets transmitted on various links; the significance of
these will be clearer below.

2The algorithm can be modified somewhat to allow for the possibility of node repair. In this case, the
mode number may indeed decrease. In this report, we do not consider the possibility of repair, and assume
that at most one node can fail over the infinite time duration.

9

G,H,I

E,F

D,E,F

F

H

H

D,G,H,I

G,H,I

S

A

B

C

k
l

m

r >= 1−l

D,E,F+H,G,I

p >= 1−k s >= 1−l

t >= 1−m

E,F

u >= 1−m

q >= 1−k

D,E

D

D,G,I

G,F+H,I

E,F+H

optionally

optionally
optionally

Figure 2: Four node network – Some link rate constraints shown

4.2 Operation in Modes I and II

The operation in modes I and II is substantially identical. Therefore, we discuss these two
modes together. The network is initially in mode I, and remains in this mode until the
detection of the presence of a node failure, or incorrect behavior by some node. The new
mode subsequent to failure detection may be II, III, of IV, as elaborated later.

The Byzantine agreement algorithm proceeds in rounds. The duration of most rounds
can be made approximately 1 unit time, as discussed later. Computation is assumed to
require 0 time.3

Round 1: Sender S transmits as follows:

D, E, F to node A,

D, G, H, I to node B, and

3As seen later, we use the agreement algorithm in a pipelined manner. Computation delay can be
incorporated by adding pipeline stages for computation, in addition to communication stages.

10

D, E, G, I, F ⊕ H to node C.

These transmissions are shown in Figure 2.
The number of bits sent on links from S to the peers are as follows:
link SA = k, link SB = l, and link SC = m.

Round 2: The peers send information to each other according to the following schedule.
The schedule is illustrated in Figure 2

• Links AB and BA: Schedule packets E, F on link AB, and packets G, H, I on link BA.
Size of E, F together is 1− l, and size of G, H, I is 1−k. Thus, we are within capacity
r and p of links AB and BA, respectively (by inequalities 7 and 5, respectively). Recall
that in inequalities 2 through 13, R needs to be replaced by 1, to obtain inequalities
for normalized rates.

Recall from inequality 14 that p + r ≥ 1, and that the total size of D, E, F, G, H, I
is 1. Thus there is capacity left on links AB and BA together to transmit packet D.
Schedule part of D on AB, and remaining part of D on BA, such that all of D is
scheduled, and the capacity of links AB and BA is not exceeded. Recall that both A
and B receive D from S.

Observe that now A and B exchange all packets with each other on links AB and BA
together.

• Links BC and CB: Schedule packet H on link BC, and packets E, F ⊕ H on link CB.
Size of H is 1 − m, and size of E, F ⊕ H is 1 − l. Thus, we are within capacity t and
s of links BC and CB, respectively (as per inequalities 9 and 8, respectively).

Recall from inequality 15 that t + s ≥ 1. Thus there is capacity left on links BC and
CB together to transmit packets D, G, I. Schedule parts of D, G, I on BC, and rest
on CB such that all of D, G, I is scheduled, and the capacity of links BC and CB is
not exceeded. Recall that both B and C receive D, G, I from S.

Observe that B and C either exchange a certain packet (from D, E, F, G, H, I) or
enough information to infer the packet. In particular, exchanging H and F ⊕H allows
inferring F . We will see later how this is useful.

• Links AC and CA: Schedule packet F on link AC, and packets G, F ⊕ H, I on link
CA. Size of F is 1−m, and size of G, F ⊕H, I is 1− k. Thus, we are within capacity
u and q of links AC and CA, respectively (as per inequalities 10 and 6, respectively).

Recall from inequality 16 that u + q ≥ 1. Thus there is capacity left on links BC and
CB together to transmit packets D, E. Schedule parts of D, E on AC, and rest on
CA such that all of D, E is scheduled, and the capacity of links AC and CA is not
exceeded.

11

Observe that A and C either exchange a certain packet (from D, E, F, G, H, I) or
enough information to infer the packet.

Round 3: Assessment The peers use the information they have received from S and
other peers to determine whether there is a “mismatch” (or inconsistency) between their
information and the information of the peers. This process may also include further commu-
nication with S, as elaborated below. In case of a detected inconsistency, a peer may accuse
another peer of being faulty. These accusations may not be accurate, since the source node
S may send incorrect information to the peers, making a peer appear faulty, and a faulty
peer may not necessarily send inconsistent information.

Each assessment is either f or g. At time 0, at any peer, the initial assessment of
other nodes is g (good or fault-free). Once any assessment changes to f (faulty), it remains
f , even when the algorithm is executed multiple times (that is, assessment are initialized
to g only at time 0, and not re-initialized at the start of each execution of the algorithm).
Thus, in the following, we only describe the instances where an assessment is made equal to
f .

We now explain how each peer determines whether to assess another peer as faulty
(f). Let us consider the assessment at each peer.

• Assessment at node A: We describe checks performed for each of the packets.

Packet D: Node A has exchanged all the bits of D with B over links AB and BA
together. Node A compares the bits of D that it receives from B on link BA with the
corresponding bits received from S, and if there is a mismatch, B is assessed as faulty.
Similar check for bits of D is performed for node C.

Packet E: Node A has exchanged all the bits of E with C over AC and CA together.
Node A compares the bits of E that it receives from C on link CA with the corre-
sponding bits received from S, and if there is a mismatch, C is assessed as faulty.

Packets F, H: Node A has received H from B, and F⊕H from C. We will use subscripts
below to denote the node from which a certain value is received. For instance, (F⊕H)C

will denote F ⊕ H received from C, and FS will denote F received from S. Node A
computes H as computed H = (F ⊕ H)C ⊕ FS. If the computed H mismatches with
HB, then node A transmits HB to node S on link AS. Node S responds using a single
bit to indicate whether HB is correct (if node S is faulty, it may respond arbitrarily). If
node S responds that HB is incorrect, then node A assesses that B is faulty, otherwise
A assesses that C is faulty.

Packets G, I: Node A has received packets G, I from nodes B and C both. If the two
copies match, no change is made to the current assessment of B and C. In case of
mismatch, GB, IB is sent to S on link AS. S responds with 1 bit whether this value of

12

GB, IB is correct or not. If S responds that it is incorrect, node A assesses node B as
faulty, otherwise assesses C as faulty.

Observe that, on link AS, the maximum amount of data sent in round 3 is |G, H, I| =
(m − l) + (1 − m) + (l − k) = 1 − k. Observe that link AS is used only if a mismatch
of packets is detected above, and node S sends the feedback only if packets are sent to
S on link AS.

• Assessment at node B: The procedure at node B is similar to that at node A.

Packet D: This check is analogous to that at node A, and may result in node A or C
assessed faulty (in case of mismatch).

Packet E: Node B has received E from node A and node C. If the two copies match,
no change is made to the current assessment of A and C. In case of mismatch, the
copy of E received from A is sent to S on link BS. S responds with 1 bit whether it
considers that copy correct or not. If S responds that the copy is incorrect, node B
assesses node A as faulty, otherwise assesses C as faulty.

Packets F, H: Node B has received F from A, and F ⊕ H from C. Using F ⊕ H
received from C, and H received from S node B computes F . If this computed F
mismatch with FA, then node B transmits FA to node S on link BS. Node S responds
using a single bit to indicate whether that copy of F is correct (if node S is faulty, it
may respond arbitrarily). If node S responds that the copy is incorrect, then node B
assesses that A is faulty, otherwise B assesses that node C is faulty.

Packets G, I: Node B has exchanged all the bits of G, I with C over links BC and CB
together. Node B compares the bits of G, I that it receives from C with the bits it
received from S, and if there is a mismatch, C is assessed as faulty.

Observe that, on link BS, the maximum amount of data sent in round 3 is |E, F | =
(m − l) + (1 − m) = 1 − l. Also observe that link BS is used only if a mismatch of
packets is detected above, and node S sends the feedback only if packets are sent to S
on link BS.

• Assessment at node C:

Packet D: This check is analogous to that at node A, and may result in node A or B
assessed faulty (in case of mismatch).

Packet E: Bits of E received from S are compared with those received from A, and a
mismatch results in node A being assessed as faulty.

Packet F, H: Node C has received F from A and F ⊕H from S. Using F ⊕H received
from S, and F received from A, node C computes H . If this computed H mismatch
with the H received from B, then node C transmits H received from B to node S on
link CS. Node S responds using a single bit to indicate whether that copy of H is

13

correct (if node S is faulty, it may respond arbitrarily). If node S responds that the
copy is incorrect, then node C assesses that B is faulty, otherwise C assesses that node
A is faulty.

Packets G and I: Node C has exchanged all the bits of G, I with B over links BC and
CB together. Node C compares the bits of G, I that it receives from B with the bits
it received from S, and if there is a mismatch, B is assessed as faulty.

Observe that, on link CS, the maximum amount of data sent is |F | = 1 − m. Also
observe that link CS is used only if a mismatch of packets is detected above, and node
S sends the feedback only if packets are sent to S on link CS.

Recall that communication between one or more peers and node S occurs during the
assessment only if a mismatch of packets is detected at one of the peer nodes. If the network
is still in mode I, then no mismatch will be detected, and no such communication will be
necessary. However, when a mismatch is detected, additional communication between one
or more peers and S is needed, and additional time must be allocated to round 3. This
optional communication can be achieved as follows.

In round 3, each peer first determines whether it needs to perform communication
with node S for the purpose of assessment or not, and sends a 1-bit message to the other
peers informing them of the determination. To ensure consistent dissemination of these
messages, each peer delivers its 1 bit message to other peers and S using a traditional
Byzantine agreement algorithm, such as the algorithm by Pease, Shostak and Lamport [33],
[22]. Since at most one node is faulty, agreement on these messages can be ensured. This
allows all the fault-free nodes to synchronously add time to round 3.

Each peer is allowed to request additional time for round 3 only once. This ensures
that a faulty node cannot needlessly keep adding time to round 3. Any peer asking for
additional time more than once will be determined to be faulty. In this event, the faulty
node can be excluded from the algorithm, and the rest of the nodes treated (correctly) as
fault-free.

How much time should be added to round 3? We assume that the capacity of links AS,
BS and CS is > 0. Since a finite number of bits need to be exchanged during the extended
period, with a non-zero capacity, the duration required will be finite as well. Also, round
3 is extended only a finite number of times, and each such extended round only requires a
finite amount of time. As we will see later, in a pipelined execution, the overhead of round
3 amortized over duration t approaches 0 as t → ∞.

The overhead of the Byzantine agreement over the 1 bit messages results in a normal-
ized cost of O(1/R). By scaling R we can make this overhead arbitrarily small (as discussed
later).

Why is it acceptable to allow each peer to extend round 3 only once? The purpose of
such an extension is to allow a peer to determine which one of the other peers may be faulty.

14

For instance, suppose that node A sends to node S packets G, H, I and receives feedback
from S that suggests that node B may be faulty. It should be easy to see that there is no
disadvantage in sending these packets to S again in the future. If the feedback from S was
accurate, then it will remain unchanged. If the feedback from S is incorrect, it is possible
that node S will stick to this incorrect feedback in the future as well. Thus, in each case, the
execution may evolve such that the feedback from S remains unchanged, and therefore, we
can eliminate the communication between A and S altogether, after communicating once.

Round 4: Agreement By the end of round 3, each peer has obtained its own assessment
of other peers. Each peer transmits its assessments to other peers and S using the traditional
Byzantine agreement, such as the algorithm by Pease, Shostak and Lamport [33], [22]. Since
at most one node is faulty, all nodes obtain identical information about the assessments by
other nodes. This allows all the fault-free nodes to be in an identical mode at the start of
each round.

Since the assessment sent by each node is 2 bits, the normalized cost of each node’s
assessment is 2/R. The overhead of performing Byzantine agreement for these assessments
is at most 6/R or O(1/R) per link. By scaling R, this overhead can also be made small, as
seen later.

When a peer node receives the assessments from other peers, it forms a diagnosis
graph. An example of such a graph is shown in Figure 3. Due to the use of Byzantine
agreement for the assessments, all fault-free peers will form identical diagnosis graphs. In
Figure 3, we see that node A has assessed node B as faulty, but has not changed the initial
g assessment of node C. The notion of diagnosis here is borrowed from past literature on
system-level diagnosis, including the seminal paper by Preparata, Metze and Chien (PMC)
[35]. The diagnosis graph used here is also similar the of conflict graph used in prior work
on consensus [37].

A B

C

f

g

f
f

g
g

f

g indicates good (fault−free)

indicates faulty

Figure 3: Diagnosis graph

Using the diagnosis graph, each fault-free peer determines which data it should agree
on such that the correct agreement with other fault-free peer(s) is ensured. We will elaborate
on this in the following.

15

• Mode I: If none of the edges of the diagnosis graph are f , then all nodes are operating
correctly (as shown in Claim 1), and each peer node agrees on the data it can infer
using the information received from S and its peers. In particular, node A has received
D, E, F from S and G, H, I from B, and node A agrees on these 6 packets. Node B
received D, G, H, I from node S, and E, F from node A. Similarly, node C received
D, E, G, I from S, H from B, and F from A. Thus, all the nodes are able to obtain all
the data.

In this case, since no failure has been detected, the network continues operating in
Mode I.

Claim 1 There is no f in the diagnosis graph if and only if (iff) no node has behaved
incorrectly.

Proof: If all nodes are non-faulty, it is easy to see that there will be no f in the
diagnosis graph.

Now suppose that there is no f in the diagnosis graph. If one of the peers nodes are
behaving incorrectly:

– Node A: First of all, node A cannot misbehave by making faulty assessments
about B or C, otherwise there will be at least one f in the diagnosis graph. Then
the only way A can misbehave is to send some “bad” bits to B or C. Suppose A
corrupts some bits it sends to B: If A corrupts bits of D, since B has received the
whole correct packet D from S, it will detect a mismatch and then will assess A
as faulty. If A corrupts bits of E or F , since B has received the correct packet H
from S, and E, F ⊕H from C which is fault-free, B can recover the correct packet
E, F and compare them with the ones from A and detect a mismatch. Then B
will send E and F it received from A to S and assess A as faulty upon receiving
S’s reply. So A cannot corrupt the bits it exchanges with B. A similar argument
can show that A cannot corrupt the bits it exchanges with C.

– The argument for node B or C being faulty is similar.

If node S is behaving incorrectly. This means that node S sends inconsistent packets
to the peers.

– D: since D is exchanged between every peer pair, at least two peers will see a
mismatch;

– E: S transmits E to A and C and all bits of E are exchanged between A and C,
at least one of them will see a mismatch;

16

– F, H : S transmits F to A, H to B and F ⊕H to C. If FA ⊕HB 6= (F ⊕H)C , then
A, B, and C will all see a mismatch will result in 3 f ’s in the diagnosis graph. If
FA ⊕ HB = (F ⊕ H)C , then it is as if S did not corrupt any one of these three
packets, since the peers will form consistent view of these packets.

– G, I: S transmits G, I to B and C and all bits of G, I is exchanged between B
and C, so both of them will see a mismatch.

So S cannot transmit inconsistent data to the peers without causing some edge(s) in
the diagnosis graph becoming f . 2

• Mode II: If one or both edges between only one of the node pairs in the diagnosis graph
is f , then the network is in Mode II. In this case, it can be argued that the third peer
must be fault-free (as implied by Claim 2):

Claim 2 An edge in the diagnosis graph is f only if either node S or one of the peer
nodes associated with the f edge is faulty.

Proof: Recall that at most one node in the network may be faulty. Suppose that
an edge between A to B is f , and suppose in contradiction that S, A and B are all
fault-free. Thus only node C may be faulty. Since S is fault-free, the packets A and
B received from S are correct and consistent. The D, E, G, I packets A and B have
exchanged are also correct since they are not faulty. So regardless of whether C has
sent incorrect data to A and/or B or not, A and B will not assess each other as
faulty, and the edges between A and B in the diagnosis graph will remain g. This is a
contradiction. Similar argument can be used for packets F, H as well.

The proof is similar for other edges. 2

Such a situation is illustrated in Figure 4. In this example, one of nodes S, A and B
must be faulty, as per Claim 2. Therefore, due to the single fault assumption, node C
must be fault-free.

It is important that node C can be argued to be fault-free, since we can now require
the fault-free peers to agree with C. This is achieved as follows:

Recall that nodes A and C have exchanged packets D, E, I, G, F, F ⊕ H on links AC
and CA together. Similarly, B and C have exchanged D, E, G, H, I, F ⊕ H with each
other on links BC and CB. A and B have assessed C as fault-free, and vice-versa. Thus,
the H computed by C and H sent by B must be identical. We require C to agree on
this value of H , and the F value sent by A. Similarly, B (if fault-free) is required to
agree on its own value of H , and F computed using own value of F and F ⊕H received
from C. Similarly, A (if fault-free) is required to agree on its own value of F and H
computed using F ⊕ H received from C. It should be clear that, given the diagnosis

17

graph, the fault-free peers will agree on identical F and H . Secondly, if S is fault-free,
these values will be identical to those sent by S, since the agreed values are consistent
with F ⊕ H received by C, and the F or H value sent by A or B, respectively.

The above paragraph shows how the fault-free peers agree on correct F and H . Node
C agrees on the local copies of D, E, G, I (that is, packets received from S).

Now consider node B, if it is fault-free: Node B agrees on E received from node C.
Also, node B has exchanged remaining packets (D, G, I) with C; since no mismatches
were detected, these packets at B must be identical to those at C, and therefore B
agrees on the local copy of D, G, I.

Consider node A, if it is fault-free: Node A agrees on G, I received from C. from node
C. Also, node A has exchanged remaining packets (D, E) with C; since no mismatches
were detected, these packets at A must be identical to those at C, and therefore A
agrees on the local copy of D, E.

The above argument shows how the fault-free peers can agree correctly provided that
the only f links are between nodes A and B. As noted above, this implies that node
C is fault-free.

Similar argument can be used to show correct agreement in cases (a) and (b) below
also.

(a) one or both edges between only A and C in the diagnosis graph are f (implying
that B is fault-free):

– Node A has sent F to node B, and node C has sent F ⊕H to node B. Since B has
not accused either of A and C of being faulty, these F and F ⊕H values must be
consistent with the H value at node B. Node B will agree on the local value of H ,
and F received from A. Node A (if fault-free) can correctly agree on H received
from B and the local value of F . Node C (if fault-free) can correctly agree on the
H received from B, and F computed using this H and the local value of F ⊕ H .

– B has received packet E from both A and C and no mismatch was detected (in
case of a mismatch, B would have accused A or C of being faulty). Node B agrees
on the received copy of E, and nodes A and C (if fault-free) agree on local copy
of E.

– Node B has exchanged packet D with both A and C and no mismatch was identi-
fied. Node B agrees on local copy of D. Nodes A and C (if fault-free) are able to
correctly determine that their local copy of D matches with B’s local copy, and
therefore, agree on their local copy of D.

– Node B agrees on local copy of G, I. Node A (if fault-free) agrees on G, I received
from B. Nodes B and C have exchanged G, I, and not identified a mismatch. Node
C (if fault-free) agrees on its local copy of G, I.

18

(b) one or both edges between only B and C in the diagnosis graph are f (implying
that A is fault-free): This case is similar to above case.

– Node A has received packet H from B, and F ⊕H from C. Since no inconsistency
with the copy of F at node A was detected by node A, node A will agree on H
received from B, and F received from S. Node B (if fault-free) will agree on local
copy of H , and F received from node A. Node C (if fault-free) will agree on F
received from node A, and H computed using F from A and the local copy of
F ⊕ H .

– Node A has exchanged packet D with both B and C and no mismatch was identi-
fied. Node A agrees on local copy of D. Nodes B and C (if fault-free) are able to
correctly determine that their local copy of D matches with A’s local copy, and
therefore, agree on their local copy of D.

– Node A agrees on local copy of E. Node B (if fault-free) agrees on E received
from A. Nodes A and C have exchanged E, and not identified a mismatch. Node
C (if fault-free) agrees on its local copy of E.

– Node A has received packets G, I from both B and C, and no mismatch was
detected. Node A agrees on the received copy of G, I, and nodes B and C (if
fault-free) agree on their local copy of G, I.

A B

C

f

f

g
g

g
g

f

g indicates good (fault−free)

indicates faulty

Figure 4: Mode II example

• Mode III: If one or both edges between two node pairs have become f , then the network
is now in Mode III. We provide a discussion of mode III below.

• Mode IV: If one or both edges between all three node pairs are f , then the network
is now in Mode IV. In this case, according the Claim 2, the faulty node must be in
{A,B,S} ∩ {B,C,S} ∩ {A,C,S} = {S}. Thus, the fault-free peers can correctly infer
that node S must be faulty, and agree on some default value (such as ⊥), and terminate.
No further rounds are necessary as such, since S has been diagnosed as faulty.

Observe that in modes I, II, III, and IV, the f edges are confined to 0, 1, 2, and
3, node pairs, respectively. Since f edges never change back to g, it follows that only the

19

following mode changes may occur: mode I may only change to mode II, III or IV; mode II
may only change to mode III or IV; mode III may only change to mode IV.

4.3 Operation in Mode III

The network is in mode III when edges in the diagnosis graph between two node pairs are
f , and the edges between the third node pair are both g. From Claim 2, it follows that
the nodes in the third node pair must be both fault-free. Thus, the remaining peer node
cannot be trusted to provide correct data (it may be faulty, or S may have provided it bad
information). Consider the example in Figure 3. According to Claim 2, the faulty node must
be in {A,B,S} ∩ {B,C,S} = {B,S}. Thus, in this case, nodes A and C are surely fault-free.

If S is fault-free as well, then the information A and C received from S is correct. In
any case, nodes A and C can agree with each other using information they have sent to each
other, as follows:

• Nodes A and C have exchanged D, E with each other, and found them to match.
Nodes A and C both agree on their local copy of D, E.

• Node A agrees on its local copy of F , and node C agrees on F received from A. Node
A agrees on H computed using local copy of F and F ⊕H received from C. Similarly,
node C agrees on H computed using local copy of F ⊕ H and F received from A.

• Node C agrees on local copy of G, I, and node A agrees on G, I received from node C.

Clearly, the above procedure allows nodes A and C to agree on identical packets. If node S
were to be fault-free, these values would also be consistent with packets sent by node S to
nodes A and C.

In this scenario, node B may not necessarily be faulty (that is, the faulty node may
be node S). Thus, we need to provide node B the opportunity to also agree with nodes
A and C. To facilitate this, once the network enters mode III with nodes A and C being
diagnosed as surely fault-free (that is, failure known to be limited to {S,B}), we change the
communication schedule on links AB and CB. The goal here is to allow nodes A and C to
transmit the values that they agree on to node B. The algorithm changes as below once the
network enters mode III, with nodes A and C known to be fault-free.

• Round 1: Remains same as presented previously.

• Round 2: Schedule on links AC, BC, BA and CA remains same as before, but no
transmissions are performed on links AB and CB in round 2.

20

• Round 3: Node B (if fault-free) does not perform any new assessments anymore. Other
than that, the procedure remains the same as Round 3 presented previously.

• Round 4: Similar to the previous round 4, nodes A and C distribute their new assess-
ments to all the nodes using Byzantine agreement. If the diagnosis graph remains in
mode III after this, nodes A and C both compute agreed packets as discussed above.
In the original round 4, after the assessments have been distributed, each peer only
performs local computation. However, in mode III, now nodes A and C together trans-
mit all the agreed packets D, E, F, G, H, I to node B on links AB and CB. Note that
links AB and CB have not been used yet in the above steps for mode III, and from
inequality 12, we have r + s ≥ 1. Thus, there is enough capacity on links AB and
CB together to transmit all agreed packets to B (nodes A and C already have all the
agreed packets).

If the diagnosis graph changes to mode IV, however, then node S must be faulty, and
the peer nodes agree on some default value (say, ⊥) and terminate.

The above modified algorithm is useful when nodes A and C are known to be fault-
free, with the detected fault being confined to {B,S}. Similar changes can be made to the
algorithm in the other two cases of mode III, that is, when fault is known to be confined to
{A,S}, or confined to {C,S}.

4.4 Throughput Analysis

Observe that, with the exception of the determination and dissemination of the faulty as-
sessment (in rounds 3 and 4), each link is used in only 1 round of the algorithm. Also,
ignoring the overhead of computing and disseminating the assessments, each link is used
for 1 time unit over all the rounds combined (this conclusion follows by adding up the size
of packets sent on each link during all the rounds). The 2 bit response from node S (in
round 3) and the dissemination of assessments (in round 4) requires a fixed number of bits
per link, independent of R. Thus, the total time overhead for these operations is O(1/R),
and by increasing R (which can be achieved by scaling the unit of time), it is possible to
make the overhead of diagnosis messages arbitrarily close to zero. This allows us to achieve
throughput arbitrarily close to 1, as follows.

In achieving rate close to 1, it will be necessary to have multiple “generations” of
packets in the network, with the algorithm operating in a pipelined manner (one round per
pipeline stage). Agreement algorithm for one new generation of data of size 1 unit starts per
“clock cycle” (where the clock cycle of the pipeline is long enough for each of the rounds),
as shown in Figure 5. Each generation consists of four rounds and the packets are scheduled
according to the schedules we discussed in the previous section, depending on which mode the
system is in. At the end of the round 3 of every generation, node S sends the 2 bit indications

21

to the peers. At the beginning of the round 4, the peers exchange their own assessments and
determine the new mode of the system. The time duration required for data transmission
in each round is at most 1 time unit (recall that no link carries more information packets
than its capacity permits). The assessment and dissemination operations require O(1/R)
time, which can be made small by choosing a large R.

Thus, we can make the duration of each round to be equal to 1 + O(1/R). Since a
new generation of 1 unit worth of information is initiated in each round, it follows that the
agreement throughput is 1 − O(1/R). Thus, by scaling the time unit, the throughput can
be made arbitrarily close to 1.4

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�� �
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Round 1 Round 2 Round 3 Round 4

Round 1 Round 2 Round 3 Round 4

Feedback from S

Dissemination of
assessments

Messages to determine
whether to extend round 3

Round 1 Round 2 Round 3 Round 4

Round 1 Round 2 Round 3 Round 4
Generation 2

(mode I)

(Mode I II)

Generation 3
extended round 3Round 1 Round 2 Round 4

Round 1 Round 2 Round 3

Round 1 Round 2 Round 3 Round 4

Round 4

Re−transmission of

Generation 4 (in mode III)

Generation 5

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Generation 4

(Mode II III)

Generation 1

(mode I)

Generation 6

Figure 5: Example of pipelining: In generation 2, node A assesses B faulty and the system
enters mode II. In generation 3, node C assesses B as faulty and the system enters mode III;
generations 3, 4 and 5 are then dropped and retransmitted after entering mode III.

Figure 5 shows an example execution of the pipelining. The system starts in mode
I. Nominally 1 clock cycle is assigned to each round, including round 3. When round 3
is not extended, much of the time in round 3 would be idle time. The system is in mode
I for generations 1 and 2. During round 3 of generation 3, node A decides that it needs
to communicate with S, and the round 3 is extended as shown. By the end of this round
(cycle 5), node A assesses that node B is faulty, and the system enters mode II after the
assessments are exchanged at the beginning of round 4 of generation 3. In round 3 of
generation 4, node C assesses node B as faulty. Since B has already been accused by A, the
system now enters mode III after the assessment exchange in round 4 of generation 4 (nodes
A and C are identified as faulty, with the detected fault being confined to {B,S}). Note
that, at the time the system enters mode III, three generations of packets are in the system

4In the special case of k = 1, the throughput can be made exactly equal to 1, by eliminating the need
for the assessment messages. In this case, the algorithm reduces to the agreement algorithm proposed by
Lamport, Shostak and Pease [22].

22

using the old schedule (in this example: generations 4, 5 and 6). To allow a transition to the
new schedule in mode III, the packets belonging to generations 4, 5 and 6 are dropped, and
retransmitted using the algorithm/schedule for mode III. Thus, agreement for the dropped
generations is re-initiated in subsequent clock cycles.5

Observe that with the above pipelined operation, each link is used for data transmis-
sion at most once in each round, no matter how the mode changes. This implies that all the
links are being used within their capacity constraint. Although three generations may be
dropped when the system enters mode III, the overhead of dropped generations approaches
zero asymptotically (as time t approaches ∞). Recall that the transition to mode III oc-
curs only once. Similarly, the constant duration overhead (constant, independent of R) of
extended round 3 also occurs only a finite number of times – thus, the normalized overhead
of extended round 3 decreases as R increases. Thus, the normalized throughput approaches
1 asymptotically despite the dropped generations, as t → ∞ and R → ∞.

5 Lower Bound on Capacity

A lower bound on capacity follows from the above algorithm and its capacity analysis, and
the inequalities presented previously. In particular, a lower bound on agreement capacity is
obtained by taking the minimum over the left hand sides of all the inequalities 2 through
13.

6 Conclusion

This report defines throughput and capacity of Byzantine agreement, and illustrates the
concepts through the example of a four node network.

A future report will describe our more recent results on this topic.

Many problems remain open, including generalization of the agreement algorithm to
other topologies and larger number of failures, and a complete capacity characterization.

Acknowledgements

We thank Jennifer Welch for pointing us to the past work on continuous consensus and
multi-Paxos. Thanks are due to Pramod Viswanath for a discussion that helped us remove
an unnecessary constraint previously included in Section 4.1.

5In fact, it is not essential that generation 6 be dropped. We drop it here to simplify the discussion.

23

Research reported here is supported in part by Army Research Office grant W-911-
NF-0710287. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied,
of the U.S. Government.

References

[1] H. Attiya and J. Welch. Distributed Computing. McGraw-Hill, 1998.

[2] N. Cai and R. W. Yeung. Network error correction, part II: Lower bounds. Communi-
cations in Information and Systems, 6(1):37–54, 2006.

[3] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI ’99: Proceedings
of the third symposium on Operating systems design and implementation, pages 173–
186, Berkeley, CA, USA, 1999. USENIX Association.

[4] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[5] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering
perspective. ACM Symposium on Principles of Distributed Computing, 2007.

[6] M. Chereque, D. Powell, P. Reynier, J. Richier, and J. Voiron. Active replication in
Delta-4. In 22nd International Symposium on Fault-Tolerant Computing, pages 28–37,
July 1992.

[7] E. C. Cooper. Replicated distributed programs. In ACM Symp. on Oper. Syst. Princ.,
pages 63–78, 1985.

[8] L. Davidovitch, S. Dolev, and S. Rajsbaum. Stability of multivalued continuous con-
sensus. SIAM J. Comput., 37(4):1057–1076, 2007.

[9] C. Dwork and Y. Moses. Knowledge and common knowledge in a byzantine environ-
ment: crash failures. Inf. Comput., 88(2):156–186, 1990.

[10] C. Fragouli, D. Lun, M. Mdard, and P. Pakzad. On feedback for network coding. In in
Proc. of 2007 Conference on Information Sciences and Systems (CISS), 2007.

[11] R. Friedman, A. Mostéfaoui, S. Rajsbaum, and M. Raynal. Distributed agreement
and its relation with error-correcting codes. In DISC ’02: Proceedings of the 16th
International Conference on Distributed Computing, pages 63–87, London, UK, 2002.
Springer-Verlag.

24

[12] C. Gkantsidis and P. Rodriguez Rodriguez. Cooperative security for network coding
file distribution. INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, pages 1–13, April 2006.

[13] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. R. Karger. Byzantine
modification detection in multicast networks using randomized network coding. In
IEEE International Symposium on Information Theory, 2004.

[14] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard. Resilient net-
work coding in the presence of byzantine adversaries. INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE, pages 616–624, May
2007.

[15] D. C. Kamal, D. Charles, K. Jain, and K. Lauter. Signatures for network coding. In
Fortieth Annual Conference on Information Sciences and Systems, 2006.

[16] S. Kim, T. Ho, M. Effros, and A. Salman. Network error correction with unequal
link capacities. In 47th Annual Allerton Conference on Communication, Control, and
Computing, October 2009.

[17] R. Koetter and M. Mdard. An algebraic approach to network coding. IEEE/ACM
Transactions on Networking, 11:782–795, 2001.

[18] O. Kosut and L. Tong. Nonlinear network coding is necessary to combat general byzan-
tine attacks. In 47th Annual Allerton Conference on Communication, Control, and
Computing, October 2009.

[19] R. Kotla, A. Clement, E. Wong, L. Alvisi, and M. Dahlin. Zyzzyva: speculative byzan-
tine fault tolerance. Commun. ACM, 51(11):86–95, 2008.

[20] M. N. Krohn. On-the-fly verification of rateless erasure codes for efficient content
distribution. In Proceedings of the IEEE Symposium on Security and Privacy, pages
226–240, 2004.

[21] L. Lamport and K. Marzullo. The part-time parliament. ACM Transactions on Com-
puter Systems, 16:133–169, 1998.

[22] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems, 4:382–401, 1982.

[23] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans.
Prog. Lang. Syst., 4(3):382–401, July 1982.

25

[24] Q. Li, D.-M. Chiu, and J. Lui. On the practical and security issues of batch content
distribution via network coding. Network Protocols, 2006. ICNP ’06. Proceedings of the
2006 14th IEEE International Conference on, pages 158–167, Nov. 2006.

[25] S. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE Transactions on
Information Theory, 49:371–381, 2003.

[26] G. Liang, R. Agarwal, and N. Vaidya. Secure capacity of wireless broadcast networks.
Technical Report, University of Illinois, September 2009.

[27] G. Liang, R. Agarwal, and N. Vaidya. When watchdog meets coding. In INFOCOM
2010 (to appear), 2010.

[28] G. Liang and N. Vaidya. When watchdog meets coding. Technical Report, University
of Illinois, May 2009.

[29] N. A. Lynch. Distributed algorithms. Morgan Kaufmann Publishers, 1995.

[30] G. M. Masson, D. M. Blough, and G. F. Sullivan. System diagnosis. In D. K. Pradhan,
editor, Fault-Tolerant Computer System Design. Prentice Hall, 1996.

[31] T. Mizrahi and Y. Moses. Continuous consensus via common knowledge. In TARK ’05:
Proceedings of the 10th conference on Theoretical aspects of rationality and knowledge,
pages 236–252, Singapore, Singapore, 2005. National University of Singapore.

[32] T. Mizrahi and Y. Moses. Continuous consensus with failures and recoveries. In DISC
’08: Proceedings of the 22nd international symposium on Distributed Computing, pages
408–422, Berlin, Heidelberg, 2008. Springer-Verlag.

[33] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
JOURNAL OF THE ACM, 27:228–234, 1980.

[34] F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment problem of
diagnosable systems. IEEE Transactions on Electronic Computers, EC-16(6):848–854,
1967.

[35] F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment problem of
diagnosable systems. IEEE Trans. Electr. Comput., (6):848–854, December 1967.

[36] M. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. Journal of the ACM, 36:335–348, 1989.

[37] C. C. with Ambiguous Failures. Tal mizrahi and yoram moses. Distributed Computing
and Networking (Lecture Notes in Computer Science), 4904/2008, 2008.

26

[38] R. W. Yeung and N. Cai. Network error correction, part i: Basic concepts and upper
bounds. Communications in Information and Systems, 6(1):19–36, 2006.

[39] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan. An efficient signature-based scheme
for securing network coding against pollution attacks. INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE, pages 1409–1417, April 2008.

[40] F. Zhao, T. Kalker, M. Medard, and K. J. Han. Signatures for content distribution
with network coding. In IEEE International Symposium on Information Theory (ISIT),
2007.

27

