
Exploiting Opportunistic Overhearing to
Improve Performance of Mutual Exclusion in

Wireless Ad Hoc Networks

Ghazale Hosseinabadi and Nitin H. Vaidya

Department of ECE and Coordinated Science Lab.
University of Illinois at Urbana-Champaign

Urbana, IL, 61801, USA.
{ghossei2,nhv}@illinois.edu

Abstract. We design two mutual exclusion algorithms for wireless net-
works. Our mutual exclusion algorithms are distributed token based al-
gorithms which exploit the opportunistic message overhearing in wire-
less networks. One of the algorithms is based on overhearing of token
transmission. In the other algorithm, overhearing of both token and re-
quest messages is exploited. The design goal is to decrease the number
of transmitted messages and delay per critical section entry using the
information obtained from overheard messages.

Keywords: Wireless networks; opportunistic overhearing; mutual ex-
clusion.

1 Introduction

A wireless ad hoc network is a network in which a pair of nodes communicates by
sending messages over wireless links. Wireless ad hoc networks have fundamen-
tally different characteristics from wired distributed networks, mainly because
the wireless channel is a shared medium and messages sent on the wireless links
might be overheard by the neighboring nodes. The information obtained from
the overheard messages can be used in order to design distributed algorithms,
for wireless networks, with better performance metrics. Although existing dis-
tributed algorithms will run correctly on top of wireless ad hoc networks, our
contention is that efficiency can be obtained by developing distributed algo-
rithms, which are aware of the shared nature of the wireless channel. In this
paper, we present distributed mutual exclusion algorithms for wireless ad hoc
networks.

Distributed processes often need to coordinate their activities. If a collec-
tion of processes share a resource or collection of resources, then often Mutual
Exclusion (MUTEX) is required to prevent interference and ensure consistency
when accessing the resources. In a distributed system, we require a solution to
distributed mutual exclusion. Consider users who update a text file. A simple
means of ensuring that their updates are consistent is to allow them to access



the file only one at a time, by requiring the editor to lock the file before updates
can be made. A particularly interesting example is where there is no server, and
a collection of peer processes must coordinate their access to shared resources
amongst themselves.

Mutual Exclusion is a well known problem in distributed systems in which a
group of processes require entry into the critical section (CS) exclusively, in order
to perform some critical operations, such as accessing shared variables in a com-
mon store or accessing shared hardware. Mutual exclusion in distributed systems
is a fundamental property required to synchronize access to shared resources in
order to maintain consistency and integrity. To achieve mutual exclusion, con-
current access to the CS must be synchronized such that at any time only one
process can access the CS. The proposed solutions for distributed mutual ex-
clusion are categorized into two classes: token based [1], [2], [3] and permission
based [4], [5], [6]. In token based MUTEX algorithms, a unique token is shared
among the processors. A processor is allowed to enter the CS only if it holds
the token. In a permission based MUTEX algorithm, the processor that requires
entry into the CS must first obtain the permissions from a set of processors.

In this paper, we design mutual exclusion algorithms for wireless networks.
Most of the existing MUTEX algorithms are designed for typical wired net-
works [1],[2],[4],[5],[6]. Design of mutual exclusion algorithms for mobile ad hoc
networks had received some interest in the past few years [3], [7]. Although the
underlying network in these algorithms is wireless, the proposed algorithms are
only mobility aware solutions, where the goal is to deal with the problems caused
by node mobility, such as link failures and link formations. In this work, we show
that the broadcast property of the wireless medium can be exploited in order to
improve the performance of the MUTEX algorithms in wireless networks. To the
best of our knowledge, this work is the first in which opportunistic overhearing
is exploited to improve the performance of MUTEX in wireless networks.

In this work, we present two token based mutual exclusion algorithms that
are designed for wireless networks. Network nodes communicate by transmitting
unicast messages. Since the channel is wireless, a unicast message transmitted
from node i to node j might be overheard by neighbors of node i, for example
node k. In this case, node k is not the intended receiver of the message, but it
has overheard the message due to the shared nature of the wireless medium. We
design our algorithms such that the neighboring nodes that overhear messages
can learn more recent information about the current status of the algorithm.

We call our algorithms Token Overhearing Algorithm (TOA) and Token and
Request Overhearing Algorithm (TROA). TOA is based on the MUTEX algo-
rithm designed by Raymond [1]. In Raymond’s algorithm, messages are trans-
mitted over a static spanning tree of the network. TOA is based on overhearing
of the token transmission and the spanning tree maintained by the algorithm
changes when token transmission is overheard by the neighboring nodes. TROA
is based on Trehel-Naimi’s algorithm [2]. In Trehel-Naimi’s algorithm, when a
node requires entry to the CS, the node sends a request message to the last
known owner of the token. In TROA, overhearing of both request and token



messages are exploited in order to obtain recent information about the latest
token holder in the network. The performance metrics that we aim to improve
in this work are the number of transmitted messages and delay per CS entry.
Our mutual exclusion algorithms satisfy three correctness properties: 1) Mutual
Exclusion: at most one processor is in the CS at any time; 2) Deadlock free: if
any processor is waiting for the CS, then in a finite time some processor enters
the CS; 3) Starvation free: if a processor is waiting for the CS, then in a finite
time the processor enters the CS.

The remainder of this paper is organized as follows: We first describe the
network model in Section 2. In Section 3, we present TOA. TROA is described
in Section 4. Simulation results are presented in Section 5.

2 Network Model

We consider a network of n nodes, communicating by message passing in a
wireless ad hoc network. Each node has a unique identifier, i, 0 ≤ i ≤ n − 1.
Messages transmitted in the network are unicast messages. We assume that lower
layers of the network, such as MAC layer and transport layer, ensure reliable
delivery of unicast messages. To ensure reliability, retransmission mechanism is
used in lower layers in case packets are lost due to noise or interference. Since the
network is wireless, a unicast message from node i to node j might be overheard
by neighbors of node i, such as node k. We assume that if such an opportunistic
overhearing happens, node k does not discard the overheard message; instead
it uses the information included in the message. We do not assume that the
unicast message of node i to node j is delivered reliably to the neighbors of node
i. Instead, the overhearing is opportunistic, meaning that if the neighboring
nodes overhear messages not intended for them, they exploit the information
included in the messages. We assume that network nodes do not fail and each
node is aware of the set of nodes with which it can directly communicate.

3 Token Overhearing Algorithm (TOA)

Token Overhearing Algorithm (TOA) is based on Raymond’s algorithm [1]. Ray-
mond designed a distributed token based mutual exclusion algorithm in which
requests are sent over a static spanning tree of the network, towards the token
holder. The tree is maintained by logical pointers distributed over the nodes and
directed to the node holding the token. At each time instance, there is a single
directed path from each node to the token holder. When a node has a request
for the token, a sequence of request messages are sent on the path between the
requesting node and the token holder. The token is sent back over the reverse
path to the requesting node. The direction of the links over which the token is
transmitted is reversed. In this way, at each time instance, all edges of the tree
point towards the token holder.

Similar to Raymond’s algorithm, TOA uses a spanning tree of the network
over which messages are passed. But unlike Raymond’s algorithm, the spanning



(a) Initial tree (b) Raymond’s algorithm (c) TOA

Fig. 1. Example execution of Raymond’s algorithm and TOA

tree in TOA is dynamic and changes if token transmission is overheard by the
neighboring nodes. Sender and receiver of the token are specified in the token
message. When token is sent from node i to node j, any other node k that
overhears transmission of the token, changes its parent in the tree.

3.1 Example of Algorithm Operation

An example execution of Raymond’s algorithm and TOA is illustrated in Figure
1. The network is a wireless ad hoc network composed of five nodes, node 0-
4. We assume that the network is single-hop, in which all nodes are in the
communication range of each other. Figure 1(a) shows the initial spanning tree
of the network, where the token holder is 0. We consider a case where 2 requires
entry to the CS and sends a request message to 0. We assume that there is no
other pending request in the network. When 0 receives the request of 2, it sends
the token to 2. Figure 1(b) shows the spanning tree in Raymond’s algorithm
after the token is sent to 2. At this point, the direction of the edge between 0
and 2 is reversed. In Figure 1(b), nodes 1, 3 and 4 are two hops away from 2.
If any of these nodes, for example node 1, requests to enter the CS, two request
messages are sent, one request message from 1 to 0 and one from 0 to 2. It then
takes two messages to send the token from 2 to 1. So, total of four messages are
sent so that 1 can enter the CS.

We now describe how TOA performs when the nodes are initially configured
as depicted in Figure 1(a) and node 2 requires CS entry. Like Raymond’s algo-
rithm, when 0 receives the request of 2, it sends the token to 2. Since all nodes
are in the communication range of each other, token transmission from 0 to 2
might be overheard by 1, 3 and 4. We consider the best scenario for our algo-
rithm, in which all nodes 1, 3 and 4 overhear the token transmission. As a result,
1, 3 and 4 point to 2. Figure 1(c) shows the spanning tree in our algorithm when
the token is sent to 2. In this figure, nodes 1, 3 and 4 are only one hop away
from the token holder, node 2. If any of these nodes requests entry to the CS,
only two messages are transmitted, one request message and one token message.
This example shows that in single-hop wireless networks and when requests for
the token are initiated separate enough in time, TOA might perform better than



Raymond’s algorithm. The reason is that as a result of messages overhearing,
nodes might be aware of the current token holder in which case they send their
requests directly to the token holder. In single hop networks, if every node over-
hears token transmission, TOA is optimal and only two messages, one request
message and one token message, are transmitted per CS entry. On the other
hand, in Raymond’s algorithm four messages might be sent for one CS entry,
in single-hop networks. The reason is that, although the token holder and the
requesting node are in the communication range of each other, they might not
communicate directly, rather they exchange messages through the initial root
(e.g. node 0 in this example), simply because Raymond’s algorithm uses a static
spanning tree.

3.2 Overview of Token Overhearing Algorithm (TOA)

Token Overhearing Algorithm (TOA) is based on Raymond’s algorithm [1],
which is a well-known MUTEX algorithm. Due to the lack of space, we do
not present the details of Raymond’s algorithm here. We just describe our mod-
ification to Raymond’s algorithm which is OverhearToken (procedure 3.2.1).
OverhearToken is executed when a node k overhears the transmission of TOKEN
from sender to receiver. In this case, k is not the intended receiver of the mes-
sage, but it has overheard the message. parentk in the tree becomes receiver

if k and receiver are immediate neighbors, otherwise k chooses sender as its
parent.

3.2.1 OverhearToken

1: if type is TOKEN then
2: if receiver is my neighbor then
3: parent = receiver of the message

4: else
5: parent = sender of the message

TOA has three correctness properties; safety, deadlock free and lockout free. The
proofs of correctness are omitted here due to the lack of space.

4 Token and Request Overhearing Algorithm (TROA)

We design another mutual exclusion algorithm, called Token and Request Over-
hearing Algorithm (TROA) for wireless networks. TROA is based on Trehel-
Naimi’s algorithm [2]. The objective in designing TROA is to find a MUTEX
algorithm in which overhearing of both token and request messages is exploited
in order to improve the performance. We note that TOA is only based on over-
hearing of token transmission.

Trehel-Naimi’s algorithm [2] is a token-based algorithm which maintains two
data structures: (1) A dynamic tree structure in which the root of the tree is the
last node that will hold the token among the current requesting nodes. This tree
is called the last tree. Each node i has a local variable last which points to the



last probable token holder that node i is aware of. (2) A distributed queue which
maintains requests for the token that have not been answered yet. This queue
is called the next queue. Each node i keeps the variable next which points to
the next node to whom the token will be sent after i releases the CS.

In Trehel-Naimi’s algorithm, when a node i requires entry to the CS, it sends
a request to its last and then changes its last to null. As a result, i becomes
the new root of the last tree. When node j receives the request of node i, one
of these cases happens: 1) j is not the root of the tree. It forwards the request
to its last and changes its last to i. 2) j is the root of the tree. If j holds the
token, but does not use it, it sends the token to i. If j is in the CS or is waiting
for the token, j sets its next to i. Whenever j exits the CS, it sends the token
to next = i.

Trehel-Naimi’s algorithm is designed for wired networks in which transmitted
messages are not overheard by the neighboring nodes. We modify the algorithm
to perform better in wireless networks by exploiting the broadcast property of
wireless networks. In TROA, nodes can learn more recent information about the
last token holder in the network by overhearing of messages not intended for
them.

4.1 Data Structures, Messages and algorithm procedures

Since TROA and Trehel-Naimi’s algorithm are different from each other in so
many ways, we describe the details of TROA in this section. In TROA, each
node maintains the following data structures:

– privilege : privilege is true if the node holds the token, and false oth-
erwise.

– requestingCS : when a node initiates request for the token, its requestingCS
is set to true. requestingCS becomes false when the node releases the CS.

– last : when a node wants to enter the CS, it sends a request to its last.
last of a node might change when the node receives or overhears messages.

– next : When a node that is waiting for the token receives a request message
from another node, it saves the initiator of the request message in its
next. Later, when the node releases the CS, it sends the token to next.

– numCSEntry : numCSEntry of node i denotes how many times CS entry has
happened in the network such that node i is aware of.

– numReceivedRequests : it denotes how many REQUEST messages are re-
ceived by a node while the node was waiting for the TOKEN.

numCSEntry and numReceivedRequests are used as counters to determine if a
node should change its last when it overhears messages. We will present more
details later, when we describe algorithm procedures.

There are two types of messages in the algorithm, REQUEST and TOKEN. A
REQUEST message includes the following information.

– initiator : it is the id of the node that has initiated the request for the
token.



– destination : it denotes the final destination of the message. Since we con-
sider the general case of multi-hop networks, destination is not necessarily
a neighbor of initiator. In this case, the message is routed on the shortest
path between initiator and destination.

– numberCSEntry : when a node transmits a message, it writes its numCSEntry
in numberCSEntry part of the message. numberCSEntry is used by nodes
that overhear the message to determine if their last should be changed or
not.

A message of type TOKEN includes the following information.

– destination : it denotes the final destination of the token.

– numberCSEntry : As we explained before, when a node transmits a message,
it includes its numCSEntry in numberCSEntry part of the message.

We now present the procedures of TROA.
Initialization: Procedure 4.2.1 is executed at the beginning of the algorithm by
every node i to set the initial value of i’s data structures.
RequestCS: Procedure 4.2.2 is called when a node wants to enter the CS. If the
node holds the token, it enters the CS. otherwise, it sends a REQUEST to its last.

4.2.1 Initialization

1: last = INITIAL-TOKEN-HOLDER

2: next = null

3: requestingCS = false

4: numReceivedRequests = 0
5: numCSEntry = −1
6: if last == myId then
7: privilege = true

8: last = null

9: numCSEntry = 0
10: else
11: privilege = false

4.2.2RequestCS

1: requestingCS = true

2: if (privilege == false) then
3: send REQUEST to last

4: last = null

5: else
6: enter CS

OverhearRequest : When a REQUEST message from node i to node j is overheard
by node k, Procedure 4.2.3 is executed, in which if some conditions hold, node
k changes its last to initiator of the message.

4.2.3 OverhearRequest

1: if numberCSEntry > numCSEntry+numReceivedRequests+1 and last ! =
null and requestingCS == false then

2: last = initiator

3: numCSEntry = numberCSEntry−1
4: numReceivedRequests = 0



OverhearToken : When node k overhears the transmission of TOKEN from node
i to node j, Procedure 4.2.4 is executed.

4.2.4 OverhearToken

1: if numberCSEntry > numCSEntry + numReceivedRequests and last ! =
null and requestingCS == false then

2: last = destination

3: numCSEntry = numberCSEntry

4: numReceivedRequests = 0

ReceiveToken : Procedure 4.2.5 is executed when TOKEN is received at its final
destination, destination. Intermediate nodes on the path that forward the
message do not run this procedure.
ReleaseCS: Procedure 4.2.6 is executed when a node exits the CS.

4.2.5ReceiveToken

1: privilege = true

2: numCsEntry = numberCsEntry +1
3: numReceivedRequests = 0
4: enter CS

4.2.6ReleaseCS

1: requestingCS = false

2: if next ! = null then
3: privilege = false

4: send TOKEN to next

5: next = null

ReceiveRequest : Procedure 4.2.7 is executed when a REQUEST message is received
at its final destination, destination.

4.2.7 ReceiveRequest

1: if last==null then
2: if requestingCS==true then
3: next=initiator

4: else
5: privilege=false

6: send TOKEN to initiator

7: else
8: send request to last

9: numReceivedRequests++
10: last=initiator

TROA has three correctness properties; safety, deadlock free and lockout free.
The proofs of correctness are omitted here due to the lack of space.

5 Simulations

We run simulations to measure the performance of TOA and TROA. We also
simulate Raymond’s algorithm and Trehel-Naimi’s algorithm to find the im-
provements obtained by message overhearing. In our simulations, network nodes



are placed uniformly at random in a square area. The node closest to the center
of the area is chosen as the initial root of the tree. Messages sent in the network
are unicast messages. In order to implement message overhearing, we change the
802.11 MAC layer of ns-2. In the current implementation of ns-2, packets that
are received in the MAC layer of node i with MAC destination address different
from i’s MAC address are dropped. We change ns-2 so that such packets are not
dropped, and they are delivered to the application layer of node i. In this work
we measure two performance metrics, which we call the cost of the algorithms: 1)
Number of messages per CS entry: it is equal to the number of messages trans-
mitted in the network per entry to the CS. 2) Delay per CS entry: the delay is
measured as the interval between the time at which a node initiates a request
to enter the CS and the time at which the node enters the CS.

Requests for CS entry are assumed to arrive at a node according to a Poisson
distribution with rate λ requests/second. When λ is small, no other processor is
in the CS when a processor makes a request to enter the CS. In this case, the
network is said to be lightly loaded. When λ is large, there is a high demand for
entering the CS which results in queueing up of the requests and the network is
said to be heavily loaded. The time to execute the CS is 10−5 second. Figures
2-4 plot number of messages and delay per entry to the CS against λ in three
example networks. λ increases from 10−3 to 102 requests/second. Each point in
Figures 2-4 is obtained by taking the average of 10 runs of the algorithms. In
each run, total number of entry to the CS is 5 ∗ n, where n is number of nodes
in the network. In other words, each point in Figures 2-4 corresponds to the
average cost of 50 ∗ n entry to the CS.

Figure 2 plots the cost of the algorithms against λ, in a single-hop network.
The network is composed of n = 20 nodes placed uniformly at random in an area
of 100m×100m. Carrier sense range is 250m. In such a scenario, each node is an
immediate neighbor of every other node. We observe that in Figure 2(a), TOA
outperforms Raymond’s algorithm, when λ is small (i.e., under light demand for
the token). In single-hop networks and for small λ, approximately 4 messages are
transmitted per CS entry in Raymond’s algorithm while 2 messages per CS entry
are transmitted in TOA (as explained in Section 3.1). Figure 2(b) shows that the
delay per CS entry is smaller in TOA than in Raymond’s algorithm, under light
demand for the token. Under light demand for the token, when node i makes a
request to enter the CS, no other message is transmitted in the network except
the messages correspond to the request of node i. In this case, the delay per
CS entry is equal to the time required to transmit request and token messages
between the requesting node and the token holder, and the wireless channel is
available whenever a node wants to transmit a message; i.e. there is no contention
in the network.

Raymond’s algorithm is designed such that, under heavy demand for the
token, constant number of messages (approximately 3) are transmitted per CS
entry. Detailed explanation can be found in [1]. In Figure 2(a) we observe what
we expected, meaning that under heavy demand approximately 3 messages are
transmitted in both Raymond’s algorithm and TOA. As Figure 2(b) shows,



(a) Number of Messages (b) Delay

Fig. 2. 20 nodes placed in 100mx100m

both TOA and Raymond’s algorithm has the same delay when λ is large, simply
because both algorithms transmit the same number of messages per CS entry.
Delay increases as λ increases, because at each time instant, there is more than
one node requiring access to the channel and so packet of a node might be
delayed by other nodes that are using the channel.

As Figure 2 shows the cost of TOA is half of the cost of Raymond’s algo-
rithm under light demand. Under heavy demand both algorithms perform ap-
proximately the same. We conclude that the cost is decreased by opportunistic
overhearing when demand for the token is light.

Figure 2 also plots the cost of TROA and Trehel-Naimi’s Algorithm. As
Figure 2(a) shows, in TROA two messages are transmitted per CS entry under
light demand. The reason is that in TROA, nodes send their request to the last
token holder, which is known to them because of message overhearing. So, only
two messages, one request message and one token message, are transmitted per
every CS entry. On the other hand, in Trehel-Naimi’s algorithm, a requesting
node does not necessarily know which node is the last token holder, since a node
does not receive messages exchanged between other nodes. In such a case, a
sequence of request messages are transmitted until the request of the requesting
node is received by the token holder. We conclude that under light demand, cost
of TROA is less than the cost of Trehel-Naimi’s Algorithm.

Figure 2(a) shows that when demand for the token increases, the number
of messages transmitted in TROA increases. The reason is that requests for
the token from different nodes are initiated close to each other, and so a node
might not know the latest status of the algorithm when it initiates a request.
For example, we consider a case where node i sends a request to the token
holder, node j. If another node k initiates a request before it overhears the
request of node i, node k sends its request to node j which is not the last
requesting node any more. Node j will forward the request of node k to node
i and so one extra request message is transmitted. Figure 2(b) shows that
delay per CS entry in TROA is always less than Trehel-Naimi’s algorithm, when
λ is small, simply because fewer messages are transmitted in TROA. When



(a) Number of Messages (b) Delay

Fig. 3. 40 nodes placed in 500mx500m

(a) Number of Messages (b) Delay

Fig. 4. 60 nodes placed in 800mx800m

λ increases, delay of both TROA and Trehel-Naimi’s algorithm increases, as a
result of contention between nodes on accessing the wireless channel. Considering
Figure 2, we conclude that in single hop networks, opportunistic overhearing
improves the performance the most when demand for the token is light, and the
improvement is about 100%.

Figures 3 and 4 plot the cost of the algorithms in multi-hop networks. Figure
3 plots the cost in a network of 40 nodes placed randomly in an area of 500m×
500m. The underlying network in Figure 4 is 60 nodes placed randomly in an
area of 800m × 800m. Figure 3 shows that in this network topology, under
light demand for the token (small λ), the cost of TOA is less than the cost of
Raymond’s algorithm. Comparing TOA and Raymond’s algorithm in Figure 2
and Figure 3, we observe that the improvement obtained by message overhearing
has decreased in Figure 3. The reason is that in a multi-hop network, nodes
do not overhear all transmitted messages in the network and so they are not
able to learn the latest status of the algorithm, i.e. they might not know which
node currently holds the token. As Figure 3 shows and as we explained before,
under heavy demand (large λ), Raymond’s algorithm and TOA has almost the



same cost. Figure 3(b) shows that the delay of Raymond’s algorithm and TOA
increases when λ increases. This is because of the contention between nodes in
accessing the wireless channel.

As we observe in Figure 4, the cost of TOA is still less than the cost of
Raymond’s algorithms, although improvement percentage has decreased. This
shows that in Raymond’s algorithm, as the size of the network increases, the
improvement percentage obtained by exploiting message overhearing decreases.
As Figures 3 and 4 show, in these networks when λ is small, TROA outperforms
Trehel-Naimi’s algorithm and the improvement is still significant. We conclude
that the effect of exploiting message overhearing in different MUTEX algorithms
is not always the same; instead it highly depends on the design of the algorithm.

6 Conclusion

We design two distributed token based mutual exclusion algorithms for wireless
networks, called TOA and TROA. Our algorithms exploit the shared nature of
the wireless channel in which nodes can overhear the messages not intended for
them. We measured the performance of our algorithms as well as Raymond’s
algorithm and Trehel-Naimi’s algorithm through simulations in ns-2, in net-
works of different sizes and under various rates of the demand for the token.
We discussed under what conditions the performance of the considered MUTEX
algorithms is improved by exploiting message overhearing.

Acknowledgments. This work was supported in part by Boeing and the au-
thors would like to thank Boeing.

References

1. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Trans.
Comput. Syst. vol. 7, pp. 61–77 (1989)

2. Naimi, M., Trehel M.: A distributed algorithm for mutual exclusion based on data
structures and fault tolerance. In: Conference Proceedings of Sixth Annual Interna-
tional Phoenix Conference on Computers and Communications, pp. 33–39 (1987)

3. Walter, J., Welch, J., Vaidya, H.: A mutual exclusion algorithm for ad hoc mobile
networks. In: Wireless Networks, vol. 7, pp. 585–600 (2001)

4. Manivannan, D., Singhal, M.: An efficient fault-tolerant mutual exclusion algorithm
for distributed systems. In: Proceedings of the International Conference on Parallel
and Distributed Computing Systems, pp. 525–530 (1994)

5. Agrawal, D., Abbadi, A.: An efficient and fault-tolerant solution for distributed
mutual exclusion. In: ACM Trans. Comput. Syst., vol. 9, pp. 1–20 (1991)

6. Singhal, M.: A heuristically-aided algorithm for mutual exclusion in distributed
systems. In: IEEE Transactions on Computers, vol. 38: pp. 651–662 (1989)

7. Wu, W., Cao, J., Raynal, M.: A dual-token-based fault tolerant mutual exclusion
algorithm for manets. In: Proceedings of the 3rd international conference on Mobile
ad-hoc and sensor networks, pp. 572–583 (2007)

8. Bulgannawar, S., Vaidya, N.: A distributed k-mutual exclusion algorithm. In:
ICDCS, pp. 153–160 (1995)


