Exploiting Wireless Broadcast Property to Improve Performance of Mutual Exclusion

Ghazale Hosseinabadi and Nitin Vaidya
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Introduction

- Mutual Exclusion (MUTEX): a group of processors require to enter critical section exclusively in order to perform some critical operations.
- MUTEX algorithms: permission based, token based.
- Wireless channel: shared medium
- Messages might be overheard by nearby nodes due to broadcast nature of the channel.
- Goal: design MUTEX algorithms that exploit wireless broadcast property to improve performance.

Correctness

- Mutual Exclusion (safety): At most one node is in CS at any time.
- Deadlock free (live ness): If any node is waiting for CS, then in a finite time some node enters CS.
- Starvation free (fairness): If a node is waiting for CS, then in a finite time it enters CS.

Performance metric

- Number of messages sent per critical section entry.

Algorithm 1

- Based on [Raymond], “A Tree-Based Algorithm for Distributed Mutual Exclusion”:
 - Messages are sent on a spanning tree.
 - Single directed path from each node to the node holding token.
 - Spanning tree: fixed.
- Our algorithm:
 - Spanning tree: dynamic, changes in time.
 - Token is sent from A to B: any C that overhears the message, changes its parent in the tree.
 - If B is a neighbor of C, C chooses B as its parent. Otherwise, C chooses A as its parent.

Algorithm 2

- Based on [Trehel/Naimi], “A Distributed Algorithm for Mutual Exclusion Based on Data Structures and Fault Tolerance”:
 - Each node i has a variable last, which is the initiator of the last request message that is received at node i.
 - When a node initiates request for token, it sends its request to last.
- Our algorithm:
 - Multi hop: messages are sent on the shortest path between end points.
 - Id of the node initiating request for token and time of initiation is written in the request message.
 - last changes either by regular reception or by overhearing.

Simulation Results

- NS-2
- 20 nodes randomly placed in the area
- area = 100m x 100m, 500m x 500m
- Each node makes next request for token t seconds after it exits CS.
- t: exponential random variable with mean λ
- Low demand: λ = 100 sec., high demand: λ = 0.005 sec.