
Iterative Approximate Consensus in the
presence of Byzantine Link Failures ?

Lewis Tseng1, and Nitin Vaidya2

1 Department of Computer Science,
2 Department of Electrical and Computer Engineering, and

University of Illinois at Urbana-Champaign
Email: {ltseng3, nhv}@illinois.edu

Technical Report

Abstract. This paper explores the problem of reaching approximate
consensus in synchronous point-to-point networks, where each directed
link of the underlying communication graph represents a communication
channel between a pair of nodes. We adopt the transient Byzantine link
failure model [15, 16], where an omniscient adversary controls a subset
of the directed communication links, but the nodes are assumed to be
fault-free.

Recent work has addressed the problem of reaching approximate consen-
sus in incomplete graphs with Byzantine nodes using a restricted class of
iterative algorithms that maintain only a small amount of memory across
iterations [22, 21, 23, 12]. However, to the best of our knowledge, we are
the first to consider approximate consensus in the presence of Byzan-
tine links. We extend our past work that provided exact characterization
of graphs in which the iterative approximate consensus problem in the
presence of Byzantine node failures is solvable [22, 21]. In particular, we
prove a tight necessary and sufficient condition on the underlying com-
munication graph for the existence of iterative approximate consensus
algorithms under transient Byzantine link model. The condition answers
(part of) the open problem stated in [16].

1 Introduction

Approximate consensus can be related to many distributed computations in net-
worked systems, such as data aggregation [10], decentralized estimation [17], and
flocking [9]. Extensive work has addressed the problem in the presence of Byzan-
tine nodes [11] in either complete networks [6, 1] or arbitrary directed networks

? This research is supported in part by National Science Foundation award
CNS 1329681. Any opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily reflect the
views of the funding agencies or the U.S. government.

[22, 12, 21]. As observed in [2, 18], link failures become more and more prevalent.
Thus, it is of interest to consider the problem of approximate consensus in the
presence of Byzantine link failures.

This paper explores such problem in synchronous point-to-point networks,
where each directed link of the underlying communication graph represents a
communication channel between a pair of nodes. The link failures are modeled
using a transient Byzantine link failure model (formal definition in Section 2)
[15, 16], in which different sets of link failures may occur at different time. We
consider the problem in arbitrary directed graphs using a restricted class of iter-
ative algorithms that maintain only a small amount of memory across iterations,
e.g., the algorithms do not require the knowledge of the network topology. Such
iterative algorithms are of interest in networked systems, since they have low
complexity and do not rely on global knowledge [12]. In particular, the iterative
algorithms have the following properties, which we will state more formally later:

– Initial state of each node is equal to a real-valued input provided to that
node.

– Termination: The algorithm terminates in finite number of iterations.
– Validity: After each iteration of the algorithm, the state of each node must

stay in the convex hull of the states of all the nodes at the end of the previous
iteration.

– ε-agreement: For any ε > 0, when the algorithm terminates, the difference
between any pair of nodes is guaranteed to be within ε.

Main Contribution This paper extends our recent work on approximate con-
sensus under node failures [22, 21]. The main contribution is identifying a tight
necessary and sufficient condition for the graphs to be able to reach approximate
consensus under transient Byzantine link failure models [15, 16] using restricted
iterative algorithms; our proof of correctness follows a structure previously used
in our work to prove correctness of other consensus algorithms in incomplete
networks [21, 23]. The use of matrix analysis is inspired by the prior work on
non-fault-tolerant consensus (e.g., [9, 3]).

Related Work Approximate consensus has been studied extensively in synchronous
as well as asynchronous systems. Bertsekas and Tsitsiklis explored reaching ap-
proximate consensus without failures in synchronous dynamic network, where
the underlying communication graph is time-varying [3]. Dolev et al. considered
approximate consensus in the presence of Byzantine nodes in both synchronous
and asynchronous systems [6], where the network is assumed to be a clique, i.e.,
a complete network. Subsequently, for complete graphs, Abraham et al. pro-
posed an algorithm to achieve approximate consensus with Byzantine nodes in
asynchronous systems using optimal number of nodes [1].

Recent work has addressed approximate consensus in incomplete graphs with
faulty nodes [22, 12, 21]. [22, 21] and [12] showed exact characterizations of graphs
in which the approximate consensus problem is solvable in the presence of Byzan-
tine nodes and malicious nodes, respectively. Malicious node is a restricted type

of Byzantine node in which every node is forced to send the identical message
to all of its neighbors.

Much effort has also been devoted to the problem of achieving consensus in
the presence of link failures [4, 2, 18, 15, 16]. Charron-Bost and Schiper proposed
a HO (Heard-Of) model that captures both the link and node failures at the same
time [4]. However, the failures are assumed to be benign in the sense that no
corrupted message will ever be received in the network. Santoro and Widmayer
proposed the transient Byzantine link failure model: a different set of links can
be faulty at different time [15, 16]. They characterized a necessary condition
and a sufficient condition for undirected networks to achieve consensus in the
transient link failure model; however, the conditions are not tight (i.e., do not
match): necessary and sufficient conditions are specified in terms of node degree
and edge-connectivity,1 respectively. Subsequently, Biely et al. proposed another
link failure model that imposes an upper bound on the number of faulty links
incident to each node [2]. As a result, it is possible to tolerate O(n2) link failures
with n nodes in the new model. Under this model, Schmid et al. proved lower
bounds on number of nodes, and number of rounds for achieving consensus [18].
However, incomplete graphs were not considered in [2, 18].

For consensus problem, it has been shown in [7] and [16], respectively, that
an undirected graph of 2f + 1 node-connectivity2 and edge-connectivity is able
to tolerate f Byzantine nodes and f Byzantine links. Independently, researchers
showed that 2f + 1 node-connectivity is both necessary and sufficient for the
problem of information dissemination in the presence of either f faulty nodes
[20] or f fixed faulty links [19].3 However, both node-connectivity and edge-
connectivity are not adequate for our problem as illustrated in Section 3.

Link failures have also been addressed under other contexts, such as dis-
tributed method for wireless control network [14], reliable transmission over
packet network [13], or estimation over noisy links [17].

2 System Model

Communication model: The system is assumed to be synchronous. The com-
munication network is modeled as a simple directed graph G(V, E), where V =
{1, . . . , n} is the set of n nodes, and E is the set of directed edges between the
nodes in V. With a slight abuse of terminology, we will use the terms edge and
link interchangeably in our presentation. In simple graph, there is at most one
directed edge from any node i to some other node j (But our results can be
extended to multi-graph). We assume that n ≥ 2, since the consensus problem
for n = 1 is trivial. Node i can reliably transmit messages to node j if and only

1 A graph G = (V, E) is said to be k-edge connected, if G′ = (V, E −X) is connected
for all X ⊆ E such that |X| < k.

2 A graph G = (V, E) is said to be k-node connected, if G′ = (V −X, E) is connected
for all X ⊆ V such that |X| < k.

3 Unlike the “transient” failures in our model, the faulty links are assumed to be fixed
throughout the execution of the algorithm in [19].

if the directed edge (i, j) is in E . Each node can send messages to itself as well;
however, for convenience, we exclude self-loops from set E . That is, (i, i) 6∈ E for
i ∈ V.

For each node i, let N−i be the set of nodes from which i has incoming edges.
That is, N−i = { j | (j, i) ∈ E }. Similarly, define N+

i as the set of nodes to which
node i has outgoing edges. That is, N+

i = { j | (i, j) ∈ E }. Since we exclude
self-loops from E , i 6∈ N−i and i 6∈ N+

i . However, we note again that each node
can indeed send messages to itself. Similarly, let E−i be the set of incoming links
incident to node i. That is, E−i contains all the links from nodes in N−i to node
i, i.e., E−i = {(j, i) | j ∈ N−i }.

Failure Model: We consider the transient Byzantine link failure model [15,
16] for iterative algorithms in directed network. All nodes are assumed to be
fault-free, and only send a single message once in each iteration. A link (i, j)
is said to be faulty if the message sent by node i is different from the message
received by node j in some iteration. Note that in our model, it is possible that
link (i, j) is faulty while link (j, i) is fault-free.4 In every iteration, up to f links
may be faulty, at most f links may deliver incorrect message or drop message.
Note that different sets of link failures may occur in different iterations.

A faulty link may tamper or drop messages. Also, the faulty links may be
controlled by a single omniscient adversary. That is, the adversary is assumed
to have a complete knowledge of the execution of the algorithm, including the
states of all the nodes, contents of messages the other nodes send to each other,
the algorithm specification, and the network topology.

3 IABC Algorithms and Example Network

In this section, we describe the structure of the Iterative Approximate Byzantine
Consensus (IABC) algorithms of interest, and state conditions that they must
satisfy. The IABC structure is identical to the one in our prior work on node
failures [22, 21, 23].

Each node i maintains state vi, with vi[t] denoting the state of node i at the
end of the t-th iteration of the algorithm (t ≥ 0). Initial state of node i, vi[0],
is equal to the initial input provided to node i. At the start of the t-th iteration
(t > 0), the state of node i is vi[t − 1]. We assume that the input at each node
is lower bounded by a constant µ and upper bounded by a constant U . The
iterative algorithm may terminate after a number of iterations that is a function
of and U . µ and U are assumed to be known a priori.

The IABC algorithms of interest will require each node i to perform the
following three steps in iteration t, where t > 0. Note that the message sent via
faulty links may deviate from this specification.

4 For example, the described case is possible in wireless network, if node i’s transmitter
is broken while node i’s receiver and node j’s transmitter and receiver all function
correctly.

1. Transmit step: Transmit current state, namely vi[t−1], on all outgoing edges
(to nodes in N+

i).
2. Receive step: Receive values on all incoming edges (from nodes in N−i).

Denote by ri[t] the vector of values received by node i from its neighbors.
The size of vector ri[t] is |N−i |. The values sent in iteration t are received in
the same iteration (unless dropped by the faulty links).

3. Update step: Node i updates its state using a transition function Ti as follows.
Ti is a part of the specification of the algorithm, and takes as input the vector
ri[t] and state vi[t− 1].

vi[t] = Ti (ri[t] , vi[t− 1]) (1)

The following properties must be satisfied by an IABC algorithm in the
presence of up to f Byzantine faulty links:

– Termination: the algorithm terminates in finite number of iterations.

– Validity: ∀t > 0, mini∈V vi[t] ≥ mini∈V vi[t− 1] and
maxi∈V vi[t] ≥ maxi∈V vi[t− 1].

– ε-agreement: If the algorithm terminates after tend iterations, then ∀i, j ∈
V, |vi[tend]− vj [tend]| < ε.

The objective in this paper is to identify the necessary and sufficient conditions
for the existence of a correct IABC algorithm (i.e., an algorithm satisfying the
above properties) for a given G(V, E).

Example Network We give an example showing that node- and edge-connectivity
are not adequate for specifying the tight condition in directed graphs. Consider
the case when f = 1 in the network in Figure 1. In the network, nodes A,B,C,D
form a clique, while node E has only incoming edges from nodes B,C,D. It
is obvious that the node- and edge-connectivity of the network are less than
2f + 1 = 3, since node E does not have any outgoing links to any other node.
However, the approximate consensus is solvable using IABC algorithms under
one (directed) faulty link, since the network satisfies the sufficient condition
proved later. The proof is presented in A. Therefore, 2f + 1 node- and edge-
connectivity are not necessary for the existence of IABC algorithms.

4 Necessary Condition

For a correct iterative approximate consensus algorithm to exists in the presence
of Byzantine link failures, the graph G(V, E) must satisfy the necessary condition
proved in this section. We now define relations⇒ and 6⇒ that are used frequently
in our proofs.

Fig. 1. Example Network

Definition 1. For non-empty disjoint sets of nodes A and B in G(V, E), A⇒ B
iff there exists a node i ∈ B that has at least f + 1 incoming links from nodes in
A, i.e., |{(j, i) | j ∈ A, (j, i) ∈ E}| > f ; A 6⇒ B iff A⇒ B is not true.

Condition P : Consider graph G(V, E). Denote by F a subset of E such that
|F | ≤ f . Let sets L,C,R form a partition of V, such that both L and R are
non-empty. Then, in G′ = (V, E − F), at least one of the two conditions below
must be true: (i) C ∪R⇒ L; (ii) L ∪ C ⇒ R.

Theorem 1. Suppose that a correct IABC algorithm exists for G(V, E). Then
G satisfies Condition P.

Proof. The proof is by contradiction. Let us assume that a correct IABC al-
gorithm exists, and for some node partition L,C,R and a subset F ⊆ E such
that |F | ≤ f , C ∪ R 6⇒ L and L ∪ C 6⇒ R in G′ = (V, E − F). Thus, for any
i ∈ L, |{(k, i) | k ∈ C ∪ R, (k, i) ∈ E − F}| < f + 1. Similarly, for any j ∈ R,
|{(k, j) | k ∈ L ∪ C, (k, j) ∈ E − F}| < f + 1.

Also assume that the links in F (if F is non-empty) all behave faulty, and
the rest of the links are all fault-free in every iteration. Note that the nodes are
not aware of the identity of the faulty links.

Consider the case when (i) each node in L has initial input m, (ii) each node
in R has initial input M , such that M > m, and (iii) each node in C, if C is
non-empty, has an input in the interval [m,M]. Define m− and M+ such that
m− < m < M < M+.

In the Transmit Step of iteration 1, each node k, sends to nodes in N+
k value

vk[0]; however, some values sent via faulty links may be tampered. Suppose that
the faulty links in F (if non-empty) tamper the messages sent via them in the
following way (i) if the link is an incoming link to a node in L, then m− < m
is deliver to that node; (ii) if the link is an incoming link to a node in R, then
M+ > M is deliver to that node; and (iii) if the link is an incoming link to a
node in C, then some arbitrary value in interval [m,M] is deliver to that node.
This behavior is possible since links in F are Byzantine faulty by assumption.
Note that m− < m < M < M+.

Consider any node i ∈ L. Recall that E−i the set of all the node i’s incoming
links. Let E′i be the subset of E−i that are incident to nodes in C ∪R, i.e.,

E′i = {(j, i) | j ∈ C ∪R, (j, i) ∈ E}.
Since |F | ≤ f , |E−i ∩ F | ≤ f . Moreover, by assumption C ∪ R 6⇒ L; thus,

|E′i − F | ≤ |E′i| ≤ f . Node i will then receive m− via the links in E−i ∩ F (if
non-empty) and values in [m,M] via the links in E′i − F , and m via the rest of
the links, i.e., links in E−i − E′i − F .

Consider the following two cases:

– Both E−i ∩ F and E′i − F are non-empty:
In this case, recall that |E−i ∩ F | ≤ f and |E′i − F | ≤ f . From node i’s
perspective, consider two possible scenarios: (a) links in E−i ∩ F are faulty,
and the other links are fault-free, and (b) links in E′i−F are faulty, and the
other links are fault-free.
In scenario (a), from node i’s perspective, all the nodes may have sent values
in interval [m,M], but the faulty links have delivered m− to node i. Accord-
ing to the validity property, vi[1] ≥ m. On the other hand, in scenario (b),
all the nodes may have sent values m− or m, where m− < m; so vi[1] ≤ m,
according to the validity property. Since node i does not know whether the
correct scenario is (a) or (b), it must update its state to satisfy the validity
property in both cases. Thus, it follows that vi[1] = m.

– At most one of E−i ∩ F and E′i − F is non-empty:
Recall that by assumption, |E−i ∩F | ≤ f and |E′i−F | ≤ f . Since at most one
of the set is non-empty, |(E−i ∩F)∪(E′i−F)| ≤ f . From node i’s perspective,
it is possible that the links in (E−i ∩ F) ∪ (E′i − F) are all faulty, and the
rest of the links are fault-free. In this situation, the values sent to node i via
all the fault-free links are all m, and therefore, vi[1] must be set to m as per
the validity property.

Thus, vi[1] = m for each node i ∈ L. Similarly, we can show that vj [1] = M for
each node j ∈ R.

Now consider the nodes in set C, if C is non-empty. All the values received
by the nodes in C are in [m,M], therefore, their new state must also remain in
[m,M], as per the validity property.

The above discussion implies that, at the end of iteration 1, the following
conditions hold true: (i) state of each node in L is m, (ii) state of each node
in R is M , and (iii) state of each node in C is in the interval [m,M]. These
conditions are identical to the initial conditions listed previously. Then, by a
repeated application of the above argument (proof by induction), it follows that
for any t ≥ 0, vi[t] = m for all ∀i ∈ L, vj [t] = M for all j ∈ R and vk[t] ∈ [m,M]
for all k ∈ C.

Since both L and R are non-empty, the ε-agreement property is not satisfied.
A contradiction. 2

Theorem 1 shows that Condition P is necessary. However, Condition P is
not intuitive. Below, we state an equivalent condition Condition S that is easier

to interpret. To facilitate the statement, we introduce the notions of “source
component” and “link-reduced graph” using the following three definitions. The
link-reduced graph is analogous to the similar concept introduced in our prior
work on node failures [22, 21, 23].

Definition 2. Graph decomposition: Let H be a directed graph. Partition
graph H into non-empty strongly connected components, H1, H2, · · · , Hh, where
h is a non-zero integer dependent on graph H, such that

– every pair of nodes within the same strongly connected component has di-
rected paths in H to each other, and

– for each pair of nodes, say i and j, that belong to two different strongly
connected components, either i does not have a directed path to j in H, or j
does not have a directed path to i in H.

Construct a graph Hd wherein each strongly connected component Hk above is
represented by vertex ck, and there is an edge from vertex ck to vertex cl if and
only if the nodes in Hk have directed paths in H to the nodes in Hl.

It is known that the decomposition graph Hd is a directed acyclic graph [5].

Definition 3. Source component: Let H be a directed graph, and let Hd be
its decomposition as per Definition 2. Strongly connected component Hk of H
is said to be a source component if the corresponding vertex ck in Hd is not
reachable from any other vertex in Hd.

Definition 4. Link-Reduced Graph: For a given graph G(V, E) and F ⊂ E,
a graph GF (V, EF) is said to be a link-reduced graph, if EF is obtained by first
removing from E all the links in F , and then removing up to f other incoming
links at each node in E − F .

Note that for a given G(V, E) and a given F , multiple link-reduced graphs GF
may exist.

Now, we state Condition S:

Condition S: Consider graph G(V, E). For any F ⊆ E such that |F | ≤ f , every
link-reduced graph GF obtained as per Definition 4 must contain exactly one
source component.

Then, we show that Condition S and Condition P specify the equivalent
property of the graph.

Lemma 1. Suppose that Condition P holds for graph G(V, E). Then G satisfies
Condition S.

Proof. By assumption, G contains at least two node, and so does GF ; therefore,
at least one source component must exist in GF . We now prove that GF cannot
contain more than one source component. The proof is by contradiction. Suppose

that there exists a subset F ⊂ E with |F | ≤ f , and the link-reduced graph
GF (V, EF) corresponding to F such that the decomposition of GF includes at
least two source components.

Let the sets of nodes in two such source components of GF be denoted L
and R, respectively. Let C = V − L− R. Observe that L,C,R form a partition
of the nodes in V. Since L is a source component in GF , it follows that there
are no directed links in EF from any node in C ∪R to the nodes in L. Similarly,
since R is a source component in GF , it follows that there are no directed links
in EF from any node in L ∪ C to the nodes in R. These observations, together
with the manner in which EF is defined, imply that (i) there are at most f links
in E − F from the nodes in C ∪R to each node in L, and (ii) there are at most
f links in E −F from the nodes in L∪C to each node in R. Therefore, in graph
G′ = (V, E −F), C ∪R 6⇒ L and L∪C 6⇒ R. Thus, G = (V, E) does not satisfies
Condition P, since F ⊆ E and |F | ≤ f , a contradiction. 2

Lemma 2. Suppose that Condition S holds for graph G(V, E). Then, G satisfies
Condition P.

Proof. The proof is by contradiction. Suppose that Condition P does not hold
for graph G = (V, E). Thus, there exist a subset F ⊂ E , where |F | ≤ f , and a
node partition L,C,R, where L and R are both non-empty, such that C∪R 6⇒ L
and L ∪ C 6⇒ R in G′ = (V, E − F).

We now constructed a link-reduced graph GF (V, EF) corresponding to set
F . First, remove all links in F from E . Then since C ∪ R 6⇒ L, the number of
links at each node in L from nodes in C ∪R is at most f ; remove all these links.
Similarly, for every node j ∈ R, remove all links from nodes in L∪C to j (recall
that by assumption, there are at most f such links). The remaining links form
the set EF . It should be obvious that GF (V, EF) satisfies Definition 4; hence, GF
is a valid link-reduced graph.

Now, observe that by construction, in the link-reduced graph GF (V, EF) ,
there are no incoming links to nodes in R from nodes in L∪C; similarly, in GF ,
there are no incoming links to nodes in L from nodes in C ∪ R. It follows that
for each i ∈ L, there is no path using links in EF from i to nodes in R; similarly,
for each j ∈ R, there is no path using links in EF from j to nodes in L. Thus,
GF must contain at least two source components. Therefore, the existence of
GF implies that G violates Condition S, a contradiction. 2

Lemmas 1 and 2 imply that Condition P is equivalent to Condition S. An
alternate interpretation of Condition S is that in every link-reduced graph GF ,
non-fault-tolerant iterative consensus must be possible.

4.1 Useful Properties

Suppose G(V, E) satisfies Condition P and Condition S. We provide two lemmas
below to state some properties of G(V, E) that are useful for analyzing the itera-
tive algorithm presented later. Lemma 3 intuitively states that at least one node

can propagate its value to all the other nodes (over enough number of iterations).
Lemma 4 states that each node needs to have enough incoming neighbors for
achieving approximate consensus.

Lemma 3. Suppose that graph G(V, E) satisfies Condition S. Then, in any link-
reduced graph GF (V, EF), there exists a node that has a directed path to all the
other nodes in V.

Proof. Recall that Condition S states that any link-reduced graph GF (V, EF) has
a single source component. By the definition of source component, any node in
the source component (say node s) has directed paths using edges in EF to all the
other nodes in the source component, since the source component is a strongly
connected component. Also, by the uniqueness of the source component, all other
strongly connected components in GF (if any exist) are not source components,
and hence reachable from the source component using the edges in EF . Therefore,
node s also has directed paths to all the nodes in V that are not in the source
component as well. Therefore, node s has directed paths to all the other nodes
in V. This proves the lemma. 2

Lemma 4. For f > 0, if graph G = (V, E) satisfies Condition P, then each node
in V has in-degree at least 2f + 1, i.e., for each i ∈ V, |N−i | ≥ 2f + 1.

Proof. The proof is by contradiction. By assumption in the lemma, f > 0, and
graph G = (V, E) satisfies Condition P.

Suppose that there exists a node i ∈ V such that |N−i | ≤ 2f . Define L =
{i}, C = ∅, and R = V − {i}. Note that sets L,C,R form a partition of V. Now,
define an edge set F such that F ⊆ E , |F | ≤ f , and F contains min(f, |N−i |)
incoming links from nodes in R to node i.

Observe that f > 0, and |L ∪ C| = 1. Thus, there can be at most 1 link
from L ∪ C to any node in R in G′ = (V, E − F). Therefore, L ∪ C 6⇒ R in
G′ = (V, E−F). Then, recall that E−i is the set of all the node i’s incoming links.
Since L = {i} and C = ∅, E−i = {(j, i) | j ∈ R}. Also, since |E−i | = |N

−
i | ≤ 2f ,

and F contains min(f, |N−i |) links in E−i , |E−i − F | ≤ 2f − f = f . Therefore,
C ∪ R 6⇒ L in G(V, E − F). Thus, G′ = (V, E) does not satisfy Condition P, a
contradiction. 2

5 Algorithm 1

We will prove that there exists a correct IABC algorithm particularly Algorithm
1 below that satisfies the termination, validity and ε-agreement properties pro-
vided that the graph G(V, E) satisfies Condition S. This implies that Condition
P and Condition S ares also sufficient. Algorithm 1 has the iterative structure
described in Section 3, and it is similar to algorithms that were analyzed in prior
work as well [22, 21] (although correctness of the algorithm under the necessary
condition (Conditions P and S) has not been proved previously).

Algorithm 1

1. Transmit step: Transmit current state vi[t − 1] on all outgoing edges and
self-loop.

2. Receive step: Receive values on all incoming edges and self-loop. These values
form vector ri[t] of size |N−i | + 1 (including the value from node i itself).
When a node expects to receive a message from an incoming neighbor but
does not receive the message, the message value is assumed to be equal to
its own state, i.e., vi[t− 1].

3. Update step: Sort the values in ri[t] in an increasing order (breaking ties
arbitrarily), and eliminate the smallest and largest f values. Let N∗i [t] denote
the set of nodes from whom the remaining |N−i |+ 1− 2f values in ri[t] were
received. Note that as proved in Lemma 4, each node has at least 2f + 1
incoming neighbors. Thus, when f > 0, |N∗i [t]| ≥ 2. Let wj denote the value
received from node j ∈ N∗i [t]. Note that i ∈ N∗i [t]. Hence, for convenience,
define wi = vi[t− 1] to be the value node i receives from itself. Observe that
if the link from j ∈ N∗i [t] is fault-free, then wj = vj [t− 1].
Define

vi[t] = Ti(ri[t]) =
∑

j∈N∗
i [t]

ai wj (2)

where

ai =
1

|N∗i [t]|
=

1

|N−i |+ 1− 2f

The “weight” of each term on the right-hand side of (2) is ai. Note that
|N∗i [t]| = |N−i |+ 1− 2f , and i 6∈ N∗i [t] because (i, i) 6∈ E . Thus, the weights
on the right-hand side add to 1. Also, 0 < ai ≤ 1.5

Termination: Each node terminates after completing iteration tend, where tend
is a constant defined later in Equation (9). The value of tend depends on graph
G(V, E), constants U and µ defined earlier in Section 3 and parameter ε in ε-
agreement property.

6 Sufficiency (Correctness of Algorithm 1)

We will prove that given a graph G(V, E) satisfying Condition S, Algorithm 1 is
correct, i.e., Algorithm 1 satisfies termination, validity, ε-agreement properties.
Therefore, Condition S and Condition P are proved to be sufficient. We borrow
the matrix analysis from the work on non-fault-tolerant consensus [9, 3]. The
proof below follows the same structure in our prior work on node failures [21,
23]; however, such analysis has not been applied in the case of link failures.

In the rest of the section, we assume that G(V, E) satisfies Condition S and
Condition P. We introduce standard matrix tools to facilitate our proof. Then,
we use transition matrix to represent the Update step in Algorithm 1, and show
how to use these tools to prove the correctness of Algorithm 1 in G(V, E).

5 Although f and ai may be different for each iteration t, for simplicity, we do not
explicitly represent this dependence on t in the notations.

6.1 Matrix Preliminaries

In the discussion below, we use boldface upper case letters to denote matrices,
rows of matrices, and their elements. For instance, A denotes a matrix, Ai

denotes the i-th row of matrix A, and Aij denotes the element at the intersection
of the i-th row and the j-th column of matrix A.

Definition 5. A vector is said to be stochastic if all the elements of the vector
are non-negative, and the elements add up to 1. A matrix is said to be row
stochastic if each row of the matrix is a stochastic vector.

When presenting matrix products, for convenience of presentation, we adopt
the “backward” product convention below, where a ≤ b,

Πb
i=aA[i] = A[b]A[b− 1] · · ·A[a] (3)

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are
defined as follows [24]:

δ(A) = max
j

max
i1,i2

|Ai1 j −Ai2 j |

λ(A) = 1−min
i1,i2

∑
j

min(Ai1 j ,Ai2 j)

Lemma 5. For any p square row stochastic matrices A(1),A(2), . . . ,A(p),

δ(Πp
u=1A(u)) ≤ Πp

u=1λ(A(u))

Lemma 5 is proved in [8]. Lemma 6 below follows from the definition of λ(·).

Lemma 6. If all the elements in any one column of matrix Aare lower bounded
by a constant γ, then λ(A) ≤ 1 − γ. That is, if ∃g, such that Aig ≥ γ∀i, then
λ(A) ≤ 1− γ.

It is easy to show that 0 ≤ δ(A) ≤ 1 and 0 ≤ λ(A) ≤ 1, and that the rows
of A are all identical iff δ(A) = 0. Also, λ(A) = 0 iff δ(A) = 0.

6.2 Correctness of Algorithm 1

Denote by v[0] the column vector consisting of the initial states at all nodes.
The i-th element of v[0], vi[0], is the initial state of node i. Denote by v[t], for
t ≥ 1, the column vector consisting of the states of all nodes at the end of the
t-th iteration. The i-th element of vector v[t] is state vi[t].

For t ≥ 1, define F [t] to be the set of all links behaving faulty in iteration
t. Recall that link (j, i) is said to be faulty in iteration t if the value received
by node i is different from what node j sends in iteration t. Then, define NF

i as

the set of all nodes whose outgoing links to node i is faulty in iteration t, i.e.,
NF
i = {j | j ∈ N−i , (j, i) ∈ F [t]}.6

Define Nr
i as a subset of incoming neighbors at node i of size at most f , i.e.,7

Nr
i ⊆ N−i such that |Nr

i | ≤ f

Now, we state the key lemma that helps prove the correctness of Algorithm
1. In particular, Lemma 7 allows us to use results for non-homogeneous Markov
chains to prove the correctness of Algorithm 1. The proof is presented in Ap-
pendix B.

Lemma 7. The Update step in iteration t (t ≥ 1) of Algorithm 1 at the nodes
can be expressed as

v[t] = M[t]v[t− 1] (4)

where M[t] is an n×n row stochastic transition matrix with the following prop-
erty: there exist a constant β (0 < β ≤ 1) that depends only on graph G(V, E),
and Nr

i such that for each i ∈ V, and for all j ∈ {i} ∪ (N−i −NF
i −Nr

i),

Mij [t] ≥ β

Matrix M[t] is said to be a transition matrix for iteration t. Aa the lemmas
states, M[t] is a row stochastic matrix. The proof of Lemma 7 shows how to
construct a suitable row stochastic matrix M[t] for each iteration t. M[t] depends
not only on t but also on the behavior of the faulty links in iteration t.

Theorem 2. Algorithm 1 satisfies the Termination, Validity, and ε-agreement
properties.

Proof. Sections 6.3, 6.4 and 6.5 provide the proof that Algorithm 1 satisfies the
three properties for iterative approximate consensus in the presence of Byzantine
links. This proof follows a structure used to prove correctness of other consensus
algorithms in our prior work [21, 23]. 2

6.3 Validity Property

Observe that M[t + 1](M[t]v[t − 1]) = (M[t + 1]M[t])v[t − 1]. Therefore, by
repeated application of (4), we obtain for t ≥ 1,

v[t] = (Πt
u=1M[u])v[0] (5)

6 NF
i may be different for each iteration t. For simplicity, the notation does not ex-

plicitly represent this dependence.
7 As will be seen later, Nr

i corresponds to the links removed in some link-reduced
graph. Thus, the superscript r in the notation stands for “removed.” Nr

i may be
different for each t. For simplicity, the notation does not explicitly represent this
dependence.

Since each M[u] is row stochastic as shown in Lemma 7, the matrix product
Πt
u=1M[u] is also a row stochastic matrix. Thus, (5) implies that the state of

each node i at the end of iteration t can be expressed as a convex combination
of the initial states at all the nodes. Therefore, the validity property is satisfied.

6.4 Termination Property

Algorithm 1 terminates after tend iterations, where tend is a finite constant de-
pending only on G(V, E), U, µ, and ε. Recall that U and µ are defined as upper
and lower bounds of the initial inputs at all nodes, respectively. Therefore, triv-
ially, the algorithm satisfies the termination property. Later, using (9), we define
a suitable value for tend.

6.5 ε-agreement Property

The proof below follows the same structure in our prior works on node failures
[21, 23] for proving correctness of other consensus algorithms with Byzantine
nodes.

Denote by RF the set of all the link-reduced graph of G(V, E) corresponding
to some faulty link set F . Let

r =
∑

F⊂E, |F |≤f

|RF |

Note that r only depends on G(V, E) and f , and is a finite integer.
Consider iteration t (t ≥ 1). Recall that F [t] denote the set of faulty links

in iteration t. Then for each link-reduced graph H[t] ∈ RF [t], define connectivity
matrix H[t] as follows, where 1 ≤ i, j ≤ n:

– Hij [t] = 1, if either j = i, or edge (j, i) exists in link-reduced graph H;
– Hij [t] = 0, otherwise.

Thus, the non-zero elements of row Hi[t] correspond to the incoming links
at node i in the link-reduced graph H[t], or the self-loop at i. Observe that H[t]
has a non-zero diagonal.

Based on Condition S and Lemma 7, we can show the following key lemmas.

Lemma 8. For any H[t] ∈ RF [t], and k ≥ n, Hk[t] has at least one non-zero
column, i.e., a column with all elements non-zero.

Proof. G(V, E) satisfies the Condition S. Therefore, by Lemma 3, there exists
at least one node p in the link-reduced graph H[t] that has directed paths to all
the nodes in H[t] (consisting of the edges in H[t]). Hk

jp[t] of product Hk[t] is 1 if
and only if node p has a directed path to node j consisting of at most k edges in
H[t]. Since the length of the path from p to any other node in H[t] is at most n,
and p has directed paths to all the nodes, for k ≥ n the p-th column of matrix
Hk[t] will be non-zero.8 2

8 That is, all the elements of the column will be non-zero. Also, such a non-zero column
will exist in Hn−1[t], too. We use the loose bound of n to simplify the presentation.

For matrices A and B of identical dimension, we say that A ≤ B iff γAij ≤
Bij for all i, j. Lemma below relates the transition matrices with the connectivity
matrices. Constant β used in the lemma below was introduced in Lemma 7.

Lemma 9. For any t ≥ 1, there exists a link-reduced graph H[t] ∈ RF [t] such
that βH[t] ≤M[t], where H[t] is the connectivity matrix for H[t].

Proof. First, let us construct a link-reduced graph H[t] by first removing F [t]
fromG(V, E). Recall that F [t] is the set of faulty links in iteration t. Then for each
i, remove a set of at most f node i’s incoming links as defined in Lemma 7 (Nr

i).
As a result, we have obtained a link-reduced graph H[t] such that Mij [t] ≥ β, if
j = i or edge (j, i) is in the link-reduced graph H[t].

Denote by H[t] the connectivity matrix for the link-reduced graph H[t]. Then,
Hij [t] denotes the element in i-th row and j-th column of H[t]. By definition of
the connectivity matrix, we know that Hij [t] = 1, if j = i or edge (j, i) is in the
link-reduced graph; otherwise, Hij [t] = 0.

The statement in the lemma then follows from the above two observations.
2

Lemma 10. For any z ≥ 1, at least one column in the matrix product Πu+rn−1
t=u H[t]

is non-zero.

Proof. Since Πu+rn−1
t=u H[t] consists of rn connectivity matrices corresponding to

link-reduced graphs, and the number of all link-reduced graphs for F (|F | ≤ f)
is r, connectivity matrices corresponding to at least one link-reduced graph, say
matrix H∗ , will appear in the above product at least n times.

Now observe that: (i) By Lemma 8, Hn
∗ contains a non-zero column, say

the k-th column is non-zero, and (ii) by definition, all the H[t] matrices in the
product contain a non-zero diagonal. These two observations together imply that
the k-th column in the above product is non-zero.9 2

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these
matrices is a product of rn of the M[t] matrices. Specifically,

Q(i) = Πirn
t=(i−1)rn+1 M[t] (6)

From (5) and (6) observe that

v[krn] =
(
Πk
i=1 Q(i)

)
v[0] (7)

Lemma 11. For i ≥ 1, Q(i) is a scrambling row stochastic matrix, and

λ(Q(i)) ≤ 1− βrn.

9 The product Πu+rn−1
t=u H[t] can be viewed as the product of n instances of H∗ “in-

terspersed” with matrices with non-zero diagonals.

Proof. Q(i) is a product of row stochastic matrices (M[t]); therefore, Q(i) is row
stochastic. From Lemma 9, for each t ≥ 1,

βH[t] ≤ M[t]

Therefore,

βrn Πirn
t=(i−1)rn+1 H[t] ≤ Πirn

t=(i−1)rn+1 M[t] = Q(i)

By using u = (i−1)n+ 1 in Lemma 10, we conclude that the matrix product on
the left side of the above inequality contains a non-zero column. Therefore, since
β > 0, Q(i) on the right side of the inequality also contains a non-zero column.

Observe that rn is finite, and hence, βrn is non-zero. Since the non-zero terms
in H[t] matrices are all 1, the non-zero elements in Πirn

t=(i−1)rn+1H[t] must each

be ≥ 1. Therefore, there exists a non-zero column in Q(i) with all the elements
in the column being ≥ βrn. Therefore, by Lemma 6, λ(Q(i)) ≤ 1 − βrn, and
Q(i) is a scrambling matrix. 2

Let us now continue with the proof of ε-agreement. Consider the coefficient
of ergodicity δ(Πt

u=1M[u]).

δ(Πt
u=1M[u]) = δ

((
Πt
u=(b t

rn c)rn+1M[u]
)(

Π
b t
rn c

u=1 Q(i)
))

by definition of Q(u)

≤ λ
(
Πt
u=(b t

rn c)rn+1M[u]
)(

Π
b t
rn c

u=1 λ (Q(u))
)

by Lemma 5

≤ Πb
t

rn c
u=1 λ (Q(u)) because λ(·) ≤ 1

≤ (1− βrn)
b t
rn c by Lemma 11 (8)

Observe that the upper bound on right side of (8) depends only on graph
G(V, E) and t, and is independent of the input states, and the behavior of the
faulty links. Moreover, the upper bound on the right side of (8) is a non-increasing
function of t. Define tend as the smallest positive integer such that the right hand
side of (8) is smaller than ε

nmax(|U |,|µ|) . Recall that U and µ are defined as the

upper and lower bound of the inputs at all nodes. Thus,

δ(Πtend
u=1M[u]) ≤ (1− βrn)

b tend
rn c <

ε

nmax(|U |, |µ|)
(9)

Recall that β and r depend only on G(V, E). Thus, tend depends only on
graph G(V, E), and constants U, µ and ε.

Recall that Πt
u=1M[u] is an n×n row stochastic matrix. let M∗ = Πt

u=1M[u].
From 5, we have vj [t] = M∗

jv[0]. That is, the state of any node j can be obtained
as the product of the j-th row of M∗ and v[0]. Now, consider any two nodes j, k,
we have

|vj [t]− vk[t]| = |M∗
jv[0]−M∗

kv[0]|
= |Σn

i=1M
∗
jivi[0]−Σn

i=1M
∗
kivi[0]|

= |Σn
i=1

(
M∗

ji −M∗
ki

)
vi[0]|

≤ Σn
i=1|M

∗
ji −M∗

ki||vi[0]|
≤ Σn

i=1δ(M
∗)|vi[0]|

≤ nδ(M∗) max(|U |, |µ|)
≤ nδ(Πt

u=1M[u]) max(|U |, |µ|) (10)

Therefore, by (9) and (10), we have

|vj [tend]− vk[tend]| < ε (11)

Since the output of the nodes equal its state at termination (after tend iter-
ations). Thus, (11) implies that Algorithm 1 satisfies the ε-agreement property.

7 Summary

This paper explores approximate consensus problem under transient Byzantine
link failure model. We address a particular class of iterative algorithms in ar-
bitrary directed graphs, and prove a necessary and sufficient condition for the
graphs to be able to solve the approximate consensus problem iteratively.

References

1. I. Abraham, Y. Amit, and D. Dolev. Optimal resilience asynchronous approximate
agreement. In OPODIS, 2004.

2. M. Biely, U. Schmid, and B. Weiss. Synchronous consensus under hybrid process
and link failures. Theoretical Computer Science, 412(40):5602 5630, 2011.

3. D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Optimization and Neural Computation Series. Athena Scientific,
1997.

4. B. Charron-Bost and A. Schiper. The Heard-Of model: computing in distributed
systems with benign faults. Distributed Computing, 22(1):4971, April 2009.

5. S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill Higher
Education, 2006.

6. D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching
Approximate Agreement in the presence of Faults. J. ACM, May 1986.

7. M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for dis-
tributed consensus problems. PODC ’85, 1985. ACM.

8. J. Hajnal. Weak Ergodicity in non-homogeneous Markov Chains. In Proceedings
of the Cambridge Philosophical Society, volume 54, pages 233–246, 1958.

9. A. Jadbabaie, J. Lin, and A. Morse. Coordination of Groups of Mobile Autonomous
Agents using Nearest Neighbor Rules. Automatic Control, IEEE Transactions on,
48(6):988–1001, June 2003.

10. D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate
information. IEEE Symposium on Foundations of Computer Science, Oct. 2003.

11. L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM
Trans. on Programming Languages and Systems, 1982.

12. H. J. LeBlanc, H. Zhang, X. Koutsoukos, S. Sundaram. Resilient Asymptotic
Consensus in Robust Networks. Selected Areas in Communications, IEEE Journal
on , vol.31, no.4, pp.766,781, April 2013.

13. D. S. Lun, M. Médard, R. Koetter, and M. Effros. On coding for reliable commu-
nication over packet networks. Physical Communication, 2008.

14. M. Pajic, S. Sundaram, J. Le Ny, G. J. Pappas, and R. Mangharam. Closing the
Loop: A Simple Distributed Method for Control over Wireless Networks. interna-
tional conference on Information Processing in Sensor Networks, 2012.

15. N. Santoro, and P. Widmayer. Time is not a healer. in: Proc. 6th Ann. Symposium
on Theoretical Aspects of Computer Science, STACS ’89, 1989.

16. N. Santoro and P. Widmayer. Agreement in synchronous networks with ubiquitous
faults. Theor. Comput. Sci. 384 (2-3) (2007) 232249.

17. I. D. Schizas, A. Ribeiro, and G. B. Giannakis. Consensus in Ad Hoc WSNs
With Noisy Links- Part I: Distributed Estimation of Deterministic Signals. IEEE
Transactions on Signal Processing, 2008.

18. U. Schmid, B. Weiss, I. Keidar. Impossibility results and lower bounds for consen-
sus under link failures. SIAM Journal on Computing 38 (5) 19121951, 2009..

19. S. Sundaram, S. Revzen, and G. Pappas. A control-theoretic approach to dissem-
inating values and overcoming malicious links in wireless networks Automatica,
2012.

20. S. Sundaram and C. N. Hadjicostis. Distributed function calculation via linear
iterative strategies in the presence of malicious agent. IEEE Transactions on Au-
tomatic Control, 2011.

21. L. Tseng and N. H. Vaidya. Iterative approximate byzantine consensus under a
generalized fault model. In International Conference on Distributed Computing
and Networking (ICDCN), January 2013.

22. N. H. Vaidya, L. Tseng, and G. Liang. Iterative Approximate Byzantine Consensus
in Arbitrary Directed Graphs. PODC ’12, 2012. ACM.

23. N. H. Vaidya. Iterative Byzantine Vector Consensus in Incomplete Graphs. In
International Conference on Distributed Computing and Networking (ICDCN),
January 2014.

24. J. Wolfowitz. Products of Indecomposable, Aperiodic, Stochastic Matrices. In Pro-
ceedings of the American Mathematical Society, volume 14, pages 733–737, 1963.

Appendix

A Example Network

Lemma 12. The graph in Figure 1 satisfies Condition P when f = 1.

Proof. Denote by G the graph in Figure 1. First observe that a clique of 4 nodes
satisfies Condition P when f = 1. Thus, for G, we only need to consider the case
when node E is in either L or R; otherwise, some node in L (or R) from the
clique (formed by nodes A,B,C,D) will have at least f + 1 = 2 incoming links
from R (or L) excluding link in F .

Without loss of generality, consider the case when E is in L. Consider the
following cases:

– One of the nodes A,B,C,D is in L: say node X is in L besides E. Then
node X has at least f + 1 incoming links from R excluding link in F .

– Two of the nodes A,B,C,D are in L: say nodes X1, X2 are in L besides
E. Then either node X1 or X2 has at least f + 1 incoming links from R
excluding link in F .

– Three of the nodes A,B,C,D are in L: say node Y is the only node in R,
since all the other nodes are in L. Then node Y has at least f + 1 incoming
links from L excluding link in F .

In every case, either L ∪ C → R or C ∪R→ L. Thus, G satisfies Condition P.
2

B Proof of Lemma 7

We prove the following Lemma in Section 6.

Lemma 7. The Update step in iteration t (t ≥ 1) of Algorithm 1 at the nodes
can be expressed as

v[t] = M[t]v[t− 1] (12)

where M[t] is an n×n row stochastic transition matrix with the following prop-
erty: there exist a constant β (0 < β ≤ 1) that depends only on graph G(V, E),
and Nr

i such that for each i ∈ V, and for all j ∈ {i} ∪ (N−i −NF
i −Nr

i),

Mij [t] ≥ β

Proof. We prove the correctness of Lemma 7 by constructing Mi[t] for 1 ≤ i ≤ n
that satisfies the conditions in Lemma 7. Recall that F [t] denotes the set of faulty
links in the t-th iteration.

Consider a node i in iteration t (t ≥ 1). In the Update step of Algorithm 1,
recall that the smallest and the largest f values are removed from ri[t] by node i.
Denote by S and L, respectively, the set of nodes10 from whom the smallest and
the largest f values were received by node i in iteration t. Define sets Sg and Lg
to be subsets of S and L that contain all the nodes from whom node i receives the
correct value in S and L, respectively. That is, Sg = {j | j ∈ S, (j, i) ∈ E −F [t]}
and Lg = {j | j ∈ L, (j, i) ∈ E − F [t]}.

Construction of Mi[t] differs somewhat depending on whether sets Sg,Lg
and NF

i are empty or not. We divide the possibilities into 3 separate cases:

10 Although S and L may be different for each iteration t, for simplicity, we do not
explicitly represent this dependence on t in the notations S and L.

– Case I: Sg 6= ∅,Lg 6= ∅, and NF
i 6= ∅.

– Case II: Sg 6= ∅,Lg 6= ∅, and NF
i = ∅.

– Case III: at most one of Sg and Lg, and NF
i = ∅.

Observe that if Sg (Lg) is empty, then NF
i = ∅ and L = Lg (S = Sg), since

there are at most f faulty links and |S| = |L| = f . Therefore, the 3 cases above
cover all the possible scenarios.
Case I

In Case I, Sg 6= ∅,Lg 6= ∅, and NF
i 6= ∅. Let mS and mL be defined as

shown below. Recall that the incoming links from the nodes in Sg and Lg to
node i are all fault-free, and therefore, for any node j ∈ Sg ∪ Lg, wj = vj [t− 1]
(in the notation of Algorithm 1). That is, the value received by node i from node
j is exactly the state at node j in iteration t− 1.

mS =

∑
j∈Sg vj [t− 1]

|Sg|
and mL =

∑
j∈Lg

vj [t− 1]

|Lg|

Now, consider any node k ∈ NF
i . By the definition of sets Sg and Lg, mS ≤ wk ≤

mL. Therefore, we can find weights Sk ≥ 0 and Lk ≥ 0 such that Sk + Lk = 1,
and

wk = Sk mS + Lk mL (13)

=
Sk
|Sg|

∑
j∈Sg

vj [t− 1] +
Lk
|Lg|

∑
j∈Lg

vj [t− 1] (14)

Clearly, at least one of Sk and Lk must be ≥ 1/2.

We now define elements Mij [t] of row Mi[t]:

– For j ∈ N∗i [t]−NF
i : In this case, either the edge (j, i) is fault-free, or j = i.

For each such j, define Mij [t] = ai. This is obtained by observing in (2) that
the contribution of such a node j to the new state vi[t] is ai wj = ai vj [t−1].
The elements of Mi[t] defined here add up to

|N∗i [t]−NF
i | ai

– For j ∈ Sg ∪ Lg : In this case, the edge (j, i) is a fault-free.
For each j ∈ Sg,

Mij [t] = ai
∑
k∈NF

i

Sk
|Sg|

and for each node j ∈ Lg,

Mij [t] = ai
∑
k∈NF

i

Lk
|Lg|

To obtain these two expressions, we represent value wk sent via faulty link
(k, i) for each k ∈ NF

i using (14). Recall that this node k contributes aiwk
to (2). The above two expressions are then obtained by summing (14) over
all the nodes in NF

i , and replacing this sum by equivalent contributions by
nodes in Sg and Lg.
The elements of Mi[t] defined here add up to ai

∑
k∈NF

i
(Sk+Lk) = |NF

i | ai
– For j ∈ V−((N∗i −NF

i)∪Sg∪Lg) : These nodes have not yet been considered
above. For each such node j, define Mij [t] = 0.

With the above definition of Mi[t], it should be easy to see that Mi[t] v[t − 1]
is, in fact, identical to vi[t] obtained using (2). Thus, the above construction
of Mi[t] results in the values sent via faulty links to (2) being replaced by an
equivalent contribution from the nodes in Lg and Sg.

Properties of Mi[t]: First, we show that M[t] is row stochastic. Observe that
all the elements of Mi[t] are non-negative. Also, all the elements of Mi[t] above
add up to

|N∗i [t]−NF
i | ai + |NF

i | ai = |N∗i [t]| ai = 1

because ai = 1/|N∗i [t]| as defined in Algorithm 1. Thus, Mi[t] is a stochastic row
vector.

Recall that from the above discussion, for k ∈ NF
i , one of Sk and Lk must be

≥ 1/2. Without loss of generality, assume that Ss ≥ 1/2 for all nodes s ∈ NF
i .

Consequently, for each node j ∈ Sg, Mij [t] ≥ ai
|Sg|Ss ≥

ai
2|Sg| . Also, for each node

j in N∗i [t]−NF
i , Mij [t] = ai. Thus, if β is chosen such that

0 < β ≤ ai
2|Sg|

(15)

and Nr
i is defined to be Lg, then the condition in the lemma holds for node i.

That is, for all j ∈ {i} ∪ (N−i −NF
i −Nr

i),

Mij [t] ≥ β

Case II

Now, we consider the case when Sg 6= ∅,Lg 6= ∅, and NF
i = ∅. That is, when

each of S and L contains at least one node from which the node i receives correct
value, and node i receives correct value(s) from all the node(s) in N∗i [t]. In fact,
the analysis of Case II is very similar to the analysis presented above in Case I.
We now discuss how the analysis of Case I can be applied to Case II. Rewrite
(2) as follows:

vi[t] =
ai
2
vi[t− 1] +

ai
2
vi[t− 1] +

∑
j∈N∗

i [t]−{i}

aiwj (16)

= aiwz + aiwi +
∑

j∈N∗
i [t]−{i}

aiwj (17)

In the above equation, z is to be viewed as a “virtual” incoming neighbor

of node i, which has sent value wz = vi[t−1]
2 to node i in iteration t. With the

above rewriting of state update, the value received by node i from itself should

be viewed as wi = vi[t−1]
2 instead of vi[t − 1]. With this transformation, Case

II now becomes identical to Case I, with virtual node z being treated as an
incoming neighbor of node i.

In essence, a part of node i’s contribution (half, to be precise) is now replaced
by equivalent contribution by nodes in Lg and Sg. We now define elements Mij [t]
of row Mi[t]:

– For j = i: Mij [t] = ai
2 . This is obtained by observing in (2) that node i’s

contribution to the new state vi[t] is ai
vi[t−1]

2 .
– For j ∈ N∗i [t]−{i} : In this case, j is a node from which node i receives correct

value. For each such j, define Mij [t] = ai. This is obtained by observing in
(2) that the contribution of node j to the new state vi[t] is aiwj = aivj [t−1].

– For j ∈ Sg ∪ Lg : In this case, j is a node in S or L from which node i
receives correct value.
For each j ∈ Sg,

Mij [t] =
ai
2

Sz
|Sg|

and for each node j ∈ Lg,

Mij [t] =
ai
2

Lz
|Lg|

where Sz and Lz are chosen such that Sz + Lz = 1 and wz = vi[t−1]
2 =

Sz

2 mS + Lz

2 mL. Note that such Sz and Lz exist because by definition of Sg
and Lg, vi[t− 1] ≥ wj , ∀j ∈ Sg and vi[t− 1] ≤ wj , ∀j ∈ Lg. Then the two
expressions above are obtained by replacing the contribution of the virtual
node z by an equivalent contribution by the nodes in Sg and Lg, respectively.

– For j ∈ V − (N∗i [t] ∪ Sg ∪ Lg) : These nodes have not yet been considered
above. For each such node j, define Mij [t] = 0.

Properties of Mi[t]: By argument similar to that in Case I, Mi[t] is row stochas-
tic. Without loss of generality, suppose that Sz ≥ 1/2. Then for each node
j ∈ Sg, Mij [t] = ai

2|Sg|Sz ≥
ai

4|Sg| . Also, for node j in N∗i [t] − {i}, Mij [t] = ai,

and Mii[t] = ai
2 . Recall that by definition, |Sg| ≥ 1. Hence, if β is chosen such

that

0 < β ≤ ai
4|Sg|

(18)

and Nr
i is defined to be equal to Lg, then the condition in the Lemma 7 holds

for node i. That is, Mij [t] ≥ β for j ∈ {i} ∪ (N−i −NF
i −Nr

i).

Case III
Here, we consider the case when at most one of Sg and Lg is empty, and

NF
i = ∅. Without loss of generality, suppose that S contains only nodes whose

outgoing links to node i is faulty in iteration t, i.e., S = {j | (j, i) ∈ F [t]}. Since
there are at most f faulty links and |S| = f , L = Lg. That is, the value received
from each node in L by node i is correct.

In this case, define Mij [t] = ai for j ∈ N∗i [t]; define Mij = 0 for all other
nodes j.

Properties of Mi[t]:
All the elements of Mi[t] are non-negative. The elements of Mi[t] defined

above add up to
|N∗i [t]| ai = 1

Thus, Mi[t] is a stochastic row vector.
In Case III, recall that for any node j in N∗i [t], Mij [t] = ai. Thus, if β is

chosen such that
0 < β ≤ ai (19)

and Nr
i is defined to be equal to L, then the condition in the Lemma 7 holds for

node i.

Putting Cases Together
Now, let us consider Cases I-III together. From the definition of ai in Algo-

rithm 1, observe that ai ≥ 1
|N−

i |+1
(because f ≥ 0). Let us define

α = min
i∈V

1

|N−i |+ 1

Moreover, observe that |Sg| ≤ n and |Lg| ≤ n. Then define β as

β =
α

4n
(20)

This definition satisfies constraints on β in Cases I through III (conditions (15),
(18) and (19)). Thus, Lemma 7 holds for all three cases with this choice in (20).

2

