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Abstract. This paper explores the problem of reaching approximate
consensus in synchronous point-to-point networks, where each directed
link of the underlying communication graph represents a communication
channel between a pair of nodes. We adopt the transient Byzantine link
failure model [15, 16], where an omniscient adversary controls a subset
of the directed communication links, but the nodes are assumed to be
fault-free.

Recent work has addressed the problem of reaching approximate consen-
sus in incomplete graphs with Byzantine nodes using a restricted class
of iterative algorithms that maintain only a small amount of memory
across iterations [23, 21, 24, 12]. This paper addresses approximate con-
sensus in the presence of Byzantine links. We extend our past work [23,
21] that provided exact characterization of graphs in which the iterative
approximate consensus problem in the presence of Byzantine node fail-
ures is solvable. In particular, we prove a tight necessary and sufficient
condition on the underlying communication graph for the existence of
iterative approximate consensus algorithms under transient Byzantine
link model [15, 16].

1 Introduction

Approximate consensus can be related to many distributed computations in
networked systems, such as data aggregation [10], decentralized estimation [17],
and flocking [9]. Extensive work has addressed the problem in the presence of
Byzantine nodes [11] in complete networks [6, 1] and arbitrary directed networks
[23, 12, 21]. This paper consider the problem of tolerating Byzantine link failures
[2, 18, 15, 16].

We consider synchronous point-to-point networks, where each directed link
of the underlying communication graph represents a communication channel
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between a pair of nodes. The link failures are modeled using a transient Byzantine
link failure model (formal definition in Section 2) [15, 16], in which different
sets of link failures may occur at different times. We consider the problem in
arbitrary directed graphs using a restricted class of iterative algorithms that
maintain only a small amount of memory across iterations, e.g., the algorithms
do not require the nodes to have a knowledge of the entire network topology.
Such iterative algorithms are of interest in networked systems in which nodes
have only constrained power or memory, e.g., large-scale sensor systems, since
the iterative algorithms have low complexity and do not rely on global knowledge
[12]. In particular, the iterative algorithms have the following properties:

– Initial state of each node is equal to a real-valued input provided to that
node.

– Termination: The algorithm terminates in finite number of iterations.
– Validity: After each iteration of the algorithm, the state of each node must

stay in the convex hull of the states of all the nodes at the end of the previous
iteration.

– ε-agreement: For any ε > 0, when the algorithm terminates, the difference
between the outputs at any pair of nodes is guaranteed to be within ε.

Main Contribution This paper extends our recent work on approximate con-
sensus under node failures [23, 21]. The main contribution is identifying a tight
necessary and sufficient condition for the graphs to be able to reach approximate
consensus under transient Byzantine link failure models [15, 16] using restricted
iterative algorithms; our proof of correctness follows a structure previously used
in our work to prove correctness of other consensus algorithms in incomplete
networks [21, 24]. The use of matrix analysis is inspired by the prior work on
non-fault-tolerant consensus (e.g., [9, 3, 8]). For lack of space, the proofs of most
claims in the paper are omitted here. Further details can be found in [22].

Related Work Approximate consensus has been studied extensively in synchronous
as well as asynchronous systems. Bertsekas and Tsitsiklis explored reaching ap-
proximate consensus without failures in a dynamic network, where the under-
lying communication graph is time-varying [3]. Dolev et al. considered approx-
imate consensus in the presence of Byzantine nodes in both synchronous and
asynchronous systems [6], where the network is assumed to be a clique, i.e., a
complete graph. Subsequently, for complete graphs, Abraham et al. proposed
an algorithm to achieve approximate consensus with Byzantine nodes in asyn-
chronous systems using optimal number of nodes [1].

Recent work has addressed approximate consensus in incomplete graphs with
faulty nodes [23, 12, 21]. [23, 21] and [12] showed exact characterizations of graphs
in which the approximate consensus problem is solvable in the presence of Byzan-
tine nodes and malicious nodes, respectively. Malicious fault is a restricted type
of Byzantine fault in which every node is forced to send an identical message to
all of its neighbors [12].

Much effort has also been devoted to the problem of achieving consensus in
the presence of link failures [4, 2, 18, 15, 16]. Charron-Bost and Schiper proposed



a HO (Heard-Of) model that captures both the link and node failures at the same
time [4]. However, the failures are assumed to be benign in the sense that no
corrupted message will ever be received in the network. Santoro and Widmayer
proposed the transient Byzantine link failure model: a different set of links can
be faulty at different time [15, 16]. They characterized a necessary condition
and a sufficient condition for undirected networks to achieve consensus in the
transient link failure model; however, the necessary and sufficient conditions do
not match: the necessary and sufficient conditions are specified in terms of node
degree and edge-connectivity,1 respectively. Subsequently, Biely et al. proposed
another link failure model that imposes an upper bound on the number of faulty
links incident to each node [2]. As a result, it is possible to tolerate O(n2) link
failures with n nodes in the new model. Under this model, Schmid et al. proved
lower bounds on number of nodes, and number of rounds for achieving consensus
[18]. However, incomplete graphs were not considered in [2, 18].

For consensus problem, it has been shown that (i) an undirected graph of
2f + 1 node-connectivity2 is able to tolerate f Byzantine nodes [7]; and (ii) an
undirected graph of 2f + 1 edge-connectivity is able to tolerate f Byzantine
links [16]. Independently, researchers showed that 2f + 1 node-connectivity is
both necessary and sufficient for the problem of information dissemination in
the presence of either f faulty nodes [20] or f fixed faulty links [19].3

Link failures have also been addressed under other contexts, such as dis-
tributed method for wireless control network [14], reliable transmission over
packet network [13], and estimation over noisy links [17].

2 System Model

Communication model: The system is assumed to be synchronous. The com-
munication network is modeled as a simple directed graph G = (V, E), where
V = {1, . . . , n} is the set of n nodes, and E is the set of directed edges between
the nodes in V. With a slight abuse of terminology, we will use the terms edge
and link interchangeably in our presentation. In a simple graph, there is at most
one directed edge from any node i to any other node j (But our results can be
extended to multi-graphs). We assume that n ≥ 2, since the consensus problem
for n = 1 is trivial. Node i can transmit messages to node j if and only if the di-
rected edge (i, j) is in E . Each node can send messages to itself as well; however,
for convenience, we exclude self-loops from set E . That is, (i, i) 6∈ E for i ∈ V.

For each node i, let N−i be the set of nodes from which i has incoming edges.
That is, N−i = { j | (j, i) ∈ E }. Similarly, define N+

i as the set of nodes to which
node i has outgoing edges. That is, N+

i = { j | (i, j) ∈ E }. Since we exclude

1 A graph G = (V, E) is said to be k-edge connected, if G′ = (V, E −X) is connected
for all X ⊆ E such that |X| < k.

2 A graph G = (V, E) is said to be k-node connected, if G′ = (V −X, E) is connected
for all X ⊆ V such that |X| < k.

3 Unlike the “transient” failures in our model, the faulty links are assumed to be fixed
throughout the execution of the algorithm in [19].



self-loops from E , i 6∈ N−i and i 6∈ N+
i . However, we note again that each node

can indeed send messages to itself. Similarly, let E−i be the set of incoming links
incident to node i. That is, E−i contains all the links from nodes in N−i to node
i, i.e., E−i = {(j, i) | j ∈ N−i }.

Fault Model: We consider the transient Byzantine link failure model [15, 16]
for iterative algorithms in directed network. All nodes are assumed to be fault-
free, and only send a single message on each outgoing edge in each iteration.
A link (i, j) is said to be faulty in a certain iteration if the message sent by
node i is different from the message received by node j in that iteration, i.e., the
message from i to j is corrupted. Note that in our model, it is possible that link
(i, j) is faulty while link (j, i) is fault-free.4 In every iteration, up to f links may
be faulty, i.e., at most f links may deliver corrupted messages or drop messages.
Note that different sets of link failures may occur in different iterations.

A faulty link may tamper or drop messages. Also, the faulty links may be
controlled by a single omniscient adversary. The adversary is assumed to have
a complete knowledge of the execution of the algorithm, including the states of
all the nodes, contents of the messages exchanged, the algorithm specification,
and the network topology.

3 IABC Algorithms

In this section, we describe the structure of the Iterative Approximate Byzantine
Consensus (IABC) algorithms of interest, and state conditions that they must
satisfy. The IABC structure is identical to the one in our prior work on node
failures [23, 21, 24].

Each node i maintains state vi, with vi[t] denoting the state of node i at the
end of the t-th iteration of the algorithm (t ≥ 0). Initial state of node i, vi[0],
is equal to the initial input provided to node i. At the start of the t-th iteration
(t > 0), the state of node i is vi[t − 1]. We assume that the input at each node
is lower bounded by a constant µ and upper bounded by a constant U . The
iterative algorithm may terminate after a number of iterations that is a function
of µ and U . µ and U are assumed to be known a priori.

The IABC algorithms of interest will require each node i to perform the
following three steps in iteration t, where t > 0.

1. Transmit step: Transmit current state, namely vi[t−1], on all outgoing edges
(to nodes in N+

i ).
2. Receive step: Receive values on all incoming edges (from nodes in N−i ).

Denote by ri[t] the vector of values received by node i from its neighbors.
The size of vector ri[t] is |N−i |. The values sent in iteration t are received in
the same iteration. If a faulty link drops (discards) a message, it is assumed
to have some default value.

4 For example, the described case is possible in wireless network, if node i’s transmitter
is broken while node i’s receiver and node j’s transmitter and receiver all function
correctly.



3. Update step: Node i updates its state using a transition function Ti as follows.
Ti is a part of the specification of the algorithm, and takes as input the vector
ri[t] and state vi[t− 1].

vi[t] = Ti ( ri[t] , vi[t− 1] ) (1)

Finally, the output is set to the state at termination.

The following properties must be satisfied by an IABC algorithm in the presence
of up to f Byzantine faulty links in every iteration:

– Termination: the algorithm terminates in finite number of iterations.

– Validity: ∀t > 0, and ∀i ∈ V, minj∈V vj [t− 1] ≤ vi[t] ≤ maxj∈V vj [t− 1].

– ε-agreement: If the algorithm terminates after tend iterations, then

∀i, j ∈ V, |vi[tend]− vj [tend]| < ε.

For a given communication graph G = (V, E), the objective in this paper is to
identify the necessary and sufficient conditions in graph G for the existence of a
correct IABC algorithm (i.e., an algorithm satisfying the above properties) .

4 Necessary Condition

For a correct iterative approximate consensus algorithm to exist under transient
Byzantine link failures, the graphG = (V, E) must satisfy the necessary condition
proved in this section. We first define relations⇒ and 6⇒ introduced in our prior
work [23], and a condition on the graph based on ⇒.

Definition 1. For non-empty disjoint sets of nodes A and B in G′ = (V ′, E ′),
A⇒ B in G′ iff there exists a node i ∈ B that has at least f + 1 incoming links
from nodes in A, i.e., |{(j, i) | j ∈ A, (j, i) ∈ E}| > f ; A 6⇒ B iff A⇒ B is not
true.

Condition P : Consider graph G = (V, E). Denote by F a subset of E such that
|F | ≤ f . Let sets L,C,R form a partition of V, such that both L and R are
non-empty. Then, in G′ = (V, E − F ), at least one of the two conditions below
must be true: (i) C ∪R⇒ L or (ii) L ∪ C ⇒ R.

Theorem 1. Suppose that a correct IABC algorithm exists for G = (V, E). Then
G satisfies Condition P.

Proof. The proof is by contradiction. Let us assume that a correct IABC algo-
rithm exists in G = (V, E), and for some node partition L,C,R of V and a subset
F ⊆ E such that |F | ≤ f , C ∪ R 6⇒ L and L ∪ C 6⇒ R in G′ = (V, E ′), where



E ′ = E − F . Thus, for any i ∈ L, |{(k, i) | k ∈ C ∪ R, (k, i) ∈ E − F}| ≤ f .
Similarly, for any j ∈ R, |{(k, j) | k ∈ L ∪ C, (k, j) ∈ E − F}| ≤ f .

Also assume that all the links in F (if F is non-empty) are faulty, and the
rest of the links are fault-free in every iteration. Note that the nodes are not
aware of the identity of the faulty links.

Consider the case when (i) each node in L has initial input m, (ii) each node
in R has initial input M , such that M > m+ ε, and (iii) each node in C, if C is
non-empty, has an input in the interval [m,M ]. Define m− and M+ such that
m− < m and M < M+.

In the Transmit Step of iteration 1 in the IABC algorithm, each node k,
sends to nodes in N+

k value vk[0]; however, some values sent via faulty links
may be tampered. Suppose that the messages sent via the faulty links in F (if
non-empty) are tampered in the following way: (i) if the link is an incoming
link to a node in L, then m− < m is delivered to that node; (ii) if the link is
an incoming link to a node in R, then M+ > M is delivered to that node; and
(iii) if the link is an incoming link to a node in C, then some arbitrary value in
interval [m,M ] is delivered to that node. This behavior is possible since links in
F are Byzantine faulty by assumption.

Consider any node i ∈ L. Recall that E−i is the set of all the incoming links
at node i. Let E′i be the subset of links in E−i from the nodes in C ∪R, i.e.,

E′i = {(j, i) | j ∈ C ∪R, (j, i) ∈ E}.

Since |F | ≤ f , |E−i ∩ F | ≤ f . Moreover, by assumption C ∪ R 6⇒ L; thus,
|E′i| ≤ f , and we have |E′i − F | ≤ |E′i| ≤ f . Node i will then receive m− via the
links in E−i ∩F (if non-empty) and values in [m,M ] via the links in E′i−F , and
m via the rest of the links, i.e., links in E−i − E′i − F .

Consider the following two cases:

– Both E−i ∩ F and E′i − F are non-empty:
In this case, recall that |E−i ∩ F | ≤ f and |E′i − F | ≤ f . From node i’s
perspective, consider two possible scenarios: (a) links in E−i ∩ F are faulty,
and the other links are fault-free, and (b) links in E′i−F are faulty, and the
other links are fault-free.
In scenario (a), from node i’s perspective, all the nodes may have sent values
in interval [m,M ], but the faulty links have tampered the message so that
m− is delivered to node i. According to the validity property, vi[1] ≥ m. On
the other hand, in scenario (b), all the nodes may have sent values m− or m,
where m− < m; so vi[1] ≤ m, according to the validity property. Since node
i does not know whether the correct scenario is (a) or (b), it must update
its state to satisfy the validity property in both cases. Thus, it follows that
vi[1] = m.

– At most one of E−i ∩ F and E′i − F is non-empty:
Recall that by assumption, |E−i ∩F | ≤ f and |E′i−F | ≤ f . Since at most one
of the set is non-empty, |(E−i ∩F )∪(E′i−F )| ≤ f . From node i’s perspective,
it is possible that the links in (E−i ∩ F ) ∪ (E′i − F ) are all faulty, and the



rest of the links are fault-free. In this situation, all the nodes have sent m to
node i, and therefore, vi[1] must be set to m as per the validity property.

Thus, vi[1] = m for each node i ∈ L. Similarly, we can show that vj [1] = M for
each node j ∈ R.

Now consider the nodes in set C, if C is non-empty. All the values received
by the nodes in C are in [m,M ]; therefore, their new state must also remain in
[m,M ], as per the validity property.

The above discussion implies that, at the end of iteration 1, the following
conditions hold true: (i) state of each node in L is m, (ii) state of each node
in R is M , and (iii) state of each node in C is in the interval [m,M ]. These
conditions are identical to the initial conditions listed previously. Then, by a
repeated application of the above argument (proof by induction), it follows that
for any t ≥ 0, (i) vi[t] = m for all i ∈ L; (ii) vj [t] = M for all j ∈ R; and (iii)
vk[t] ∈ [m,M ] for all k ∈ C.

Since both L and R are non-empty, the ε-agreement property is not satisfied.
A contradiction. 2

Theorem 1 shows that Condition P is necessary. However, Condition P is
not intuitive. Below, we state an equivalent condition Condition S that is easier
to interpret. To facilitate the statement, we introduce the notions of “source
component” and “link-reduced graph” using the following three definitions. The
link-reduced graph is analogous to the concept introduced in our prior work on
node failures [23, 21, 24].

Definition 2. Graph decomposition ([5]): Let H be a directed graph. Par-
tition graph H into non-empty strongly connected components, H1, H2, · · · , Hh,
where h is a non-zero integer dependent on graph H, such that

– every pair of nodes within the same strongly connected component has di-
rected paths in H to each other, and

– for each pair of nodes, say i and j, that belong to two different strongly
connected components, either i does not have a directed path to j in H, or j
does not have a directed path to i in H.

Construct a graph Hd wherein each strongly connected component Hk above is
represented by vertex ck, and there is an edge from vertex ck to vertex cl if and
only if the nodes in Hk have directed paths in H to the nodes in Hl.

It is known that the decomposition graph Hd is a directed acyclic graph [5].

Definition 3. Source component: Let H be a directed graph, and let Hd be
its decomposition as per Definition 2. Strongly connected component Hk of H
is said to be a source component if the corresponding vertex ck in Hd is not
reachable from any other vertex in Hd.

Definition 4. Link-Reduced Graph: For a given graph G = (V, E) and F ⊂
E, a graph GF = (V, EF ) is said to be a link-reduced graph, if EF is obtained by
first removing from E all the links in F , and then at each node, removing up to
f other incoming links in E − F .



Note that for a given G = (V, E) and a given F , multiple link-reduced graphs
GF may exist. Now, we state Condition S based on the concept of link-reduce
graphs:

Condition S: Consider graph G = (V, E). For any F ⊆ E such that |F | ≤ f ,
every link-reduced graph GF obtained as per Definition 4 must contain exactly
one source component.

Now, we present a key lemma below. The proof is omitted for lack of space.
This proof, and the other omitted proofs in the paper are presented in [22].

Lemma 1. Condition P is equivalent to Condition S.

An alternate interpretation of Condition S is that in every link-reduced graph
GF , non-fault-tolerant iterative consensus must be possible. We will use this
intuition to prove that Condition S is sufficient in Section 6. Then, by Lemma
1, Condition P is also sufficient.

4.1 Useful Properties

Suppose G = (V, E) satisfies Condition P and Condition S. We provide two
lemmas below to state some properties of G = (V, E) that are useful for analyzing
the iterative algorithm presented later. The proofs are presented in [22].

Lemma 2. Suppose that graph G = (V, E) satisfies Condition S. Then, in any
link-reduced graph GF = (V, EF ), there exists a node that has a directed path to
all the other nodes in V.

Lemma 3. For f > 0, if graph G = (V, E) satisfies Condition P, then each node
in V has in-degree at least 2f + 1, i.e., for each i ∈ V, |N−i | ≥ 2f + 1.

5 Algorithm 1

We will prove that there exists a correct IABC algorithm – particularly Algo-
rithm 1 below – that satisfies the termination, validity and ε-agreement proper-
ties provided that the graph G = (V, E) satisfies Condition S. This implies that
Condition P and Condition S ares also sufficient. Algorithm 1 has the iterative
structure described in Section 3, and it is similar to algorithms that were ana-
lyzed in prior work as well [23, 21] (although correctness of the algorithm under
the necessary condition – Conditions P and S – has not been proved previously).



Algorithm 1

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges.
2. Receive step: Receive values on all incoming edges. These values form vector
ri[t] of size |N−i |. If a faulty incoming edge drops the message, then the
message value is assumed to be equal to the state at node i, i.e., vi[t− 1].

3. Update step: Sort the values in ri[t] in an increasing order (breaking ties
arbitrarily), and eliminate the smallest and largest f values. Let N∗i [t] denote
the set of nodes from whom the remaining |N−i | − 2f values in ri[t] were
received. Note that as proved in Lemma 3, each node has at least 2f +
1 incoming neighbors if f > 0. Thus, when f > 0, |N∗i [t]| ≥ 1. Let wj
denote the value received from node j ∈ N∗i [t], and for convenience, define
wi = vi[t − 1]. Observe that if the link from j ∈ N∗i [t] is fault-free, then
wj = vj [t− 1].
Define

vi[t] = Ti(ri[t], vi[t− 1]) =
∑

j∈{i}∪N∗
i [t]

ai wj (2)

where

ai =
1

|N∗i [t]|+ 1
=

1

|N−i |+ 1− 2f

The “weight” of each term on the right-hand side of (2) is ai. Note that
|N∗i [t]| = |N−i | − 2f , and i 6∈ N∗i [t] because (i, i) 6∈ E . Thus, the weights on
the right-hand side add to 1. Also, 0 < ai ≤ 1.

Termination: Each node terminates after completing iteration tend, where tend
is a constant defined later in Equation (9). The value of tend depends on graph
G = (V, E), constants U and µ defined earlier in Section 3 and parameter ε in
ε-agreement property.

6 Sufficiency (Correctness of Algorithm 1)

We will prove that given a graph G = (V, E) satisfying Condition S, Algorithm 1
is correct, i.e., Algorithm 1 satisfies termination, validity, ε-agreement properties.
Therefore, Condition S and Condition P are proved to be sufficient. We borrow
the matrix analysis from the work on non-fault-tolerant consensus [9, 3, 8]. The
proof below follows the same structure in our prior work on node failures [21,
24]; however, such analysis has not been applied in the case of link failures.

In the rest of the section, we assume that G = (V,F) satisfies Condition
S and Condition P. We first introduce standard matrix tools to facilitate our
proof. Then, we use transition matrix to represent the Update step in Algorithm
1, and show how to use these tools to prove the correctness of Algorithm 1 in
G = (V,F).



6.1 Matrix Preliminaries

In the discussion below, we use boldface upper case letters to denote matrices,
rows of matrices, and their elements. For instance, A denotes a matrix, Ai

denotes the i-th row of matrix A, and Aij denotes the element at the intersection
of the i-th row and the j-th column of matrix A.

Definition 5. A vector is said to be stochastic if all the elements of the vector
are non-negative, and the elements add up to 1. A matrix is said to be row
stochastic if each row of the matrix is a stochastic vector.

When presenting matrix products, for convenience of presentation, we adopt
the “backward” product convention below, where a ≤ b,

Πb
i=aA[i] = A[b]A[b− 1] · · ·A[a] (3)

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are
defined as follows [25]:

δ(A) = max
j

max
i1,i2

|Ai1 j −Ai2 j |

λ(A) = 1−min
i1,i2

∑
j

min(Ai1 j ,Ai2 j)

Lemma 4. For any p square row stochastic matrices A(1),A(2), . . . ,A(p),

δ(Πp
u=1A(u)) ≤ Πp

u=1λ(A(u))

Lemma 4 is proved in [8]. Lemma 5 below follows from the definition of λ(·).

Lemma 5. If all the elements in any one column of matrix Aare lower bounded
by a constant γ, then λ(A) ≤ 1− γ. That is, if ∃g, such that Aig ≥ γ ∀i, then
λ(A) ≤ 1− γ.

It is easy to show that 0 ≤ δ(A) ≤ 1 and 0 ≤ λ(A) ≤ 1, and that the rows
of A are all identical iff δ(A) = 0. Also, λ(A) = 0 iff δ(A) = 0.

6.2 Correctness of Algorithm 1

Denote by v[0] the column vector consisting of the initial states at all nodes.
The i-th element of v[0], vi[0], is the initial state of node i. Denote by v[t], for
t ≥ 1, the column vector consisting of the states of all nodes at the end of the
t-th iteration. The i-th element of vector v[t] is state vi[t].

For t ≥ 1, define F [t] to be the set of all faulty links in iteration t. Recall
that link (j, i) is said to be faulty in iteration t if the value received by node i is
different from what node j sent in iteration t. Then, define NF

i as the set of all
nodes whose outgoing links to node i are faulty in iteration t, i.e.,



NF
i = {j | j ∈ N−i , (j, i) ∈ F [t]}.5

Now we state the key lemma. In particular, Lemma 6 allows us to use results
for non-homogeneous Markov chains to prove the correctness of Algorithm 1.
The proof is presented in [22].

Lemma 6. The Update step in iteration t (t ≥ 1) of Algorithm 1 at the nodes
can be expressed as

v[t] = M[t]v[t− 1] (4)

where M[t] is an n×n row stochastic transition matrix with the following prop-
erty: there exist Nr

i , a subset of incoming neighbors at node i of size at most f ,6

and a constant β (0 < β ≤ 1) that depends only on graph G = (V, E) such that
for each i ∈ V, and for all j ∈ {i} ∪ (N−i −NF

i −Nr
i ),

Mij [t] ≥ β.

Matrix M[t] is said to be a transition matrix for iteration t. As the lemma
states above, M[t] is a row stochastic matrix. The proof of Lemma 6 shows how
to construct a suitable row stochastic matrix M[t] for each iteration t (presented
in [22]). M[t] depends not only on t but also on the behavior of the faulty links
in iteration t.

Theorem 2. Algorithm 1 satisfies the Termination, Validity, and ε-agreement
properties.

Proof. Sections 6.3, 6.4 and 6.5 provide the proof that Algorithm 1 satisfies the
three properties for iterative approximate consensus in the presence of Byzantine
links. This proof follows a structure used to prove correctness of other consensus
algorithms in our prior work [21, 24]. 2

6.3 Validity Property

Observe that M[t + 1](M[t]v[t − 1]) = (M[t + 1]M[t])v[t − 1]. Therefore, by
repeated application of (4), we obtain for t ≥ 1,

v[t] = (Πt
u=1M[u])v[0] (5)

5 NF
i may be different for each iteration t. For simplicity, the notation does not ex-

plicitly represent this dependence.
6 Intuitively, Nr

i corresponds to the links removed in some link-reduced graph. Thus,
the superscript r in the notation stands for “removed.” Also, Nr

i may be different
for each t. For simplicity, the notation does not explicitly represent this dependence.



Since each M[u] is row stochastic as shown in Lemma 6, the matrix product
Πt
u=1M[u] is also a row stochastic matrix. Thus, (5) implies that the state of

each node i at the end of iteration t can be expressed as a convex combination
of the initial states at all the nodes. Therefore, the validity property is satisfied.

6.4 Termination Property

Algorithm 1 terminates after tend iterations, where tend is a finite constant de-
pending only on G = (V, E), U, µ, and ε. Recall that U and µ are defined as
upper and lower bounds of the initial inputs at all nodes, respectively. There-
fore, trivially, the algorithm satisfies the termination property. Later, using (9),
we define a suitable value for tend.

6.5 ε-agreement Property

Denote by RF the set of all the link-reduced graph of G = (V, E) corresponding
to some faulty link set F . Let

r =
∑

F⊂E, |F |≤f

|RF |

Note that r only depends on G = (V, E) and f , and is a finite integer.
Consider iteration t (t ≥ 1). Recall that F [t] denotes the set of faulty links

in iteration t. Then for each link-reduced graph H[t] ∈ RF [t], define connectivity
matrix H[t] as follows, where 1 ≤ i, j ≤ n:

– Hij [t] = 1, if either j = i, or edge (j, i) exists in link-reduced graph H;
– Hij [t] = 0, otherwise.

Thus, the non-zero elements of row Hi[t] correspond to the incoming links
at node i in the link-reduced graph H[t], or the self-loop at i. Observe that H[t]
has a non-zero diagonal.

Based on Condition S and Lemmas 2, 6, we can show the following key
lemmas. The omitted proofs are presented in [22].

Lemma 7. For any H[t] ∈ RF [t], and k ≥ n, Hk[t] has at least one non-zero
column, i.e., a column with all elements non-zero.

Then, Lemma 7 can be used to prove the following lemma.

Lemma 8. For any z ≥ 1, at least one column in the matrix product Πu+rn−1
t=u H[t]

is non-zero.

For matrices A and B of identical dimension, we say that A ≤ B iff Aij ≤ Bij

for all i, j. Lemma below relates the transition matrices with the connectivity
matrices. Constant β used in the lemma below was introduced in Lemma 6.



Lemma 9. For any t ≥ 1, there exists a link-reduced graph H[t] ∈ RF [t] such
that βH[t] ≤M[t], where H[t] is the connectivity matrix for H[t].

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these
matrices is a product of rn of the M[t] matrices. Specifically,

Q(i) = Πirn
t=(i−1)rn+1 M[t] (6)

From (5) and (6) observe that

v[krn] =
(
Πk
i=1 Q(i)

)
v[0] (7)

Based on (7), Lemmas 6, 8, and 9, we can show the following lemma.

Lemma 10. For i ≥ 1, Q(i) is a row stochastic matrix, and

λ(Q(i)) ≤ 1− βrn.

Let us now continue with the proof of ε-agreement. Consider the coefficient
of ergodicity δ(Πt

u=1M[u]).

δ(Πt
u=1M[u]) = δ

((
Πt
u=(b t

rn c)rn+1M[u]
)(

Π
b t
rn c

u=1 Q(u)
))

by definition of Q(u)

≤ λ
(
Πt
u=(b t

rn c)rn+1M[u]
)(

Π
b t
rn c

u=1 λ (Q(u))
)

by Lemma 4

≤ Πb
t

rn c
u=1 λ (Q(u)) because λ(·) ≤ 1

≤ (1− βrn)
b t
rn c by Lemma 10 (8)

Observe that the upper bound on right side of (8) depends only on graph
G = (V, E) and t, and is independent of the input states, and the behavior of
the faulty links. Moreover, the upper bound on the right side of (8) is a non-
increasing function of t. Define tend as the smallest positive integer such that
the right hand side of (8) is smaller than ε

nmax(|U |,|µ|) . Recall that U and µ are

defined as the upper and lower bound of the inputs at all nodes. Thus,

δ(Πtend
u=1M[u]) ≤ (1− βrn)

b tend
rn c <

ε

nmax(|U |, |µ|)
(9)

Recall that β and r depend only on G = (V, E). Thus, tend depends only on
graph G = (V, E), and constants U, µ and ε.

By construction, Πt
u=1M[u] is an n × n row stochastic matrix. Let M∗ =

Πt
u=1M[u]. We omit time index [t] from the notation M∗ for simplicity. From

(5), we have vj [t] = M∗
jv[0]. That is, the state of any node j can be obtained as

the product of the j-th row of M∗ and v[0]. Now, consider any two nodes j, k.
By simple algebraic manipulation (the omitted steps are presented in [22]), we
have



|vj [t]− vk[t]| = |Σn
i=1M

∗
jivi[0]−Σn

i=1M
∗
kivi[0]|

≤ Σn
i=1|M

∗
ji −M∗

ki| |vi[0]|
≤ Σn

i=1δ(M
∗) |vi[0]|

≤ nδ(Πt
u=1M[u]) max(|U |, |µ|) (10)

Therefore, by (9) and (10), we have

|vj [tend]− vk[tend]| < ε (11)

Since the output of the nodes equal its state at termination (after tend iter-
ations). Thus, (11) implies that Algorithm 1 satisfies the ε-agreement property.

7 Summary

This paper explores approximate consensus problem under transient Byzantine
link failure model. We address a particular class of iterative algorithms in ar-
bitrary directed graphs, and prove the tight necessary and sufficient condition
for the graphs to be able to solve the approximate consensus problem in the
presence of Byzantine links iteratively.
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