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Abstract

We explore the correctness of the Certified Propagation Algorithm (CPA) [5, 1, 7, 4] in
solving broadcast with locally bounded Byzantine faults. CPA allows the nodes to use only
local information regarding the network topology. We provide a tight necessary and sufficient
condition on the network topology for the correctness of CPA. We also present some simple
extensions of this result.
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1 Introduction

In this work, we explore fault-tolerant broadcast with locally bounded Byzantine faults in syn-
chronous point-to-point networks. We assume a f -locally bounded model, in which at most f
Byzantine faults occur in the neighborhood of every fault-free node [5]. In particular, we are in-
terested in the necessary and sufficient condition on the network topology for the correctness of
the Certified Propagation Algorithm (CPA) – the CPA algorithm has been analyzed in prior work
[5, 1, 7, 4].

Problem Formulation. Consider a network of n nodes. One node in the network, called the
source (s), is given an initial input, which the source node needs to transmit to all the other nodes.
The source s is assumed to be fault-free. We say that CPA is correct, if it satisfies the following
properties, where xs denotes the input at source node s:

• Termination: every fault-free node i eventually decides on an output value yi.

• Validity: for every fault-free node i, its output value yi equals the fault-free source’s input,
i.e., yi = xs.

Related Work: Several researchers have addressed problems similar to the above problem. [5]
studied the problem in an infinite grid. [1] developed a sufficient condition in the context of arbi-
trary topologies, but the sufficient condition is not necessary. [7] provided necessary and sufficient
conditions, but the two conditions are not identical (not tight). [4] provided another condition that
can approximate (within a factor of 2) the largest f for which CPA is correct in a given graph.

2 System Model

The system is assumed to be synchronous. The synchronous communication network consisting of
n nodes including source node s is modeled as a simple directed graph G(V, E), where V is the set
of n nodes, and E is the set of directed edges between the nodes in V. We assume that n ≥ 2,
since the problem for n = 1 is trivial. Node i can transmit messages to another node j if and only
if the directed edge (i, j) is in E . Each node can transmit messages to itself as well; however, for
convenience, we exclude self-loops from set E . That is, (i, i) ̸∈ E for i ∈ V. All the links (i.e.,
communication channels) are assumed to be reliable. With a slight abuse of terminology, we will
use the terms edge and link interchangeably.

For each node i, let N−
i be the set of nodes from which i has incoming edges. That is, N−

i =
{ j | (j, i) ∈ E }. Similarly, define N+

i as the set of nodes to which node i has outgoing edges. That
is, N+

i = { j | (i, j) ∈ E }. Nodes in N−
i and N+

i are, respectively, said to be incoming and outgoing
neighbors of node i. Since we exclude self-loops from E , i ̸∈ N−

i and i ̸∈ N+
i . However, we note

again that each node can indeed transmit messages to itself.

We consider the f -local fault model, with at most f incoming neighbors of any fault-free node
becoming Byzantine faulty.
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3 Certified Propagation Algorithm (CPA)

In this section, we describe the Certified Propagation Algorithm (CPA) from [5] formally. Note
that the faulty nodes may deviate from this specification.

Source node s commits to its input xs at the start of the algorithm, i.e., sets its output equal
to xs. The source node is said to have committed to xs in round 0. The algorithm for each round
r, r > 0, is as follows:

1. Each node that commits in round r−1 to some value x, transmits message x to all its outgoing
neighbors, and then terminates.

2. If any node receives message x directly from source s, it commits to output x.

3. Through round r, if a node has received messages containing value x from at least f + 1
distinct incoming neighbors, then it commits to output x.

3.1 The Necessary Condition

For CPA to be correct, the network graph G(V, E) must satisfy the necessary condition proved in
this section. We borrow two relations ⇒ and ̸⇒ from our previous paper [9].

Definition 1 For non-empty disjoint sets of nodes A and B,

• A ⇒ B iff there exists a node v ∈ B that has at least f + 1 distinct incoming neighbors in A,
i.e., |N−

v ∩A| > f .

• A ̸⇒ B iff A ⇒ B is not true.

Definition 2 Set F ⊆ V is said to be a feasible f -local fault set, if for each node v ̸∈ F , F contains
at most f incoming neighbors of node v. That is, for every v ∈ V − F, |N−

v ∩ F | ≤ f .

Theorem 1 Suppose that CPA is correct in graph G(V, E) under the f-local fault model. Let sets
F,L,R form a partition1 of V, such that (i) source s ∈ L, (ii) R is non-empty, and (iii) F is a
feasible f -local fault set, then

• L ⇒ R, or

• R contains an outgoing neighbor of s, i.e., N+
s ∩R ̸= ∅.

Proof: Consider any partition F,L,R such that s ∈ L, R is non-empty, and F is a feasible f -local
fault set. Suppose that the input at s is xs. Consider any single execution of the CPA algorithm
such that the nodes in F behave as if they have crashed.

By assumption, CPA is correct in the given network and faulty behavior. Thus, all the fault-free
nodes commit their output to xs. Given any execution of CPA under the above behavior by the
nodes in F , consider a node v ∈ R that commits its output to xs, such that no other node in R

1Sets X1,X2, X3, ..., Xp are said to form a partition of set X provided that (i) ∪1≤i≤pXi = X, and (ii) Xi∩Xj = Φ
if i ̸= j.
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commits its output in a round prior to v’s commit. Due to the correctness of CPA, such a node v
must exist. For v to be able to commit, either it should receive the message xs directly from s, or
node v must have f + 1 distinct incoming neighbors that have committed to xs. By assumption,
nodes that have committed to xs prior to v must all be in set L. Thus, either (v, s) ∈ E , or node v
has at least f + 1 distinct incoming neighbors in set L. �

3.2 Sufficiency

We now show that the condition in Theorem 1 is also sufficient.

Theorem 2 If G(V, E) satisfies the condition in Theorem 1, then CPA is correct in G(V, E) under
the f -local fault model.

Proof: Suppose that G(V, E) satisfies the condition in Theorem 1. Let F ′ be the set of faulty
nodes. By assumption, F ′ is a feasible local fault set. Let xs be the input at source node s. We
will show that, (i) fault-free nodes do not commit to any value other than xs, and, (ii) until all
the fault-free nodes have committed, in each round of CPA, at least one additional fault-free node
commits to value xs. The proof is by induction.

Induction basis: Source node s commits in round 0 to output equal to its input xs. No other
fault-free nodes commit in round 0.

Induction: Suppose that L is the set of fault-free nodes that have committed to xs through round
r, r ≥ 0. Thus, s ∈ L. Define R = V − L − F ′. If R = ∅, then the proof is complete. Let us now
assume that R ̸= ∅.

Now consider round r + 1.

Consider any fault-free node u that has not committed prior to round r + 1 (i.e., u ∈ R). All
the nodes in L have committed to xs by the end of round r. Thus, in round r + 1 or earlier, node
u may receive messages containing values different from xs only from nodes in F ′. Since there are
at most f incoming neighbors of u in F ′, node u cannot commit to any value different from xs in
round r + 1.

By the condition in Theorem 1, there exists a node w in R such that (i) node w has an incoming
link from s, or (ii) node w has incoming links from f+1 nodes in L. In case (i), node w will commit
to xs on receiving xs from node s in round r+1 (in fact, r+1 in this case must be 1). In case (ii),
since all the nodes in L from whom node w has incoming links have committed to xs (by definition
of L), node w will be able to commit to xs after receiving messages from at least f + 1 incoming
neighbors in L, since all nodes in L have committed to xs by the end of round r by the definition
of L.2 Thus, node w will commit to xs in round r + 1.

This completes the proof. �

4 Discussion

This section discusses some extensions on the result presented above.

2Since node w did not commit prior to round r + 1, it follows that at least one node in L must have committed
in round r.
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4.1 Generalized Fault Model

In this subsection, we briefly discuss how to extend the above results under a generalized fault
model. The generalized fault model [8] is characterized using fault domain F ⊆ 2V as follows:
Nodes in set F may fail during an execution of the algorithm only if there exists set F ∗ ∈ F such
that F ⊆ F ∗. Set F is then said to be a feasible fault set.

Definition 3 Set F ⊆ V is said to be a feasible fault set, if there exists F ∗ ∈ F such that F ⊆ F ∗.

Please refer to our previous work [8] for more discussion on generalized fault model.

For a set of nodes B, define N−(B) = {i | (i, j) ∈ E , i ̸∈ B, j ∈ B}, the set of incoming
neighbors of B.

Definition 4 Given F , for disjoint sets of nodes A and B, where B is non-empty.

• A
g⇒ B iff for every F ∗ ∈ F , N−(B) ∩A ̸⊆ F ∗.

• A ̸ g⇒ B iff A
g⇒ B is not true.

Under the generalized fault model, step 3 of CPA needs to be modified as follows. Let us call
the modified algorithm CPA-G.

3. Through round r, if a node has received messages containing value x from a set M , where M
is not a feasible fault set, then the node commits to value x.

It is easy to show that a modified version of Theorem 1 stated below holds for the generalized
fault model.

Theorem 3 Suppose that CPA-G is correct in graph G(V, E) under the generalized fault model.
Let sets F,L,R form a partition of V, such that source (i) s ∈ L, (ii) R is non-empty, and (iii) F
is a feasible fault set, then

• L ⇒ R, or

• R contains an outgoing neighbor of s, i.e., N+
s ∩R ̸= ∅.

4.2 Broadcast Channel

We have so far assumed that the underlying network is a point-to-point network. The results,
however, can be easily extended to the broadcast or radio model [5, 1] as well. In the broadcast
model, when a node transmits a value, all of its outgoing neighbors receive this value identically.
Thus, no node can transmit mismatching values to different outgoing neighbors. Then, it is easy
to see that the same condition as the point-to-point network can be shown to be necessary and
sufficient for of CPA under the broadcast model as well.

Now consider the following variation of the CPA algorithm: if the outgoing neighbors of source
s do not receive a message from s in round 1, the message value is assumed to be some default
value. With this modification, the condition in Theorem 1 can also be shown to be necessary
and sufficient to perform Byzantine Broadcast [6] under the broadcast model, while satisfying the
following three conditions (allowing s to be faulty):
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• Termination: every fault-free node i eventually decides on an output value yi.

• Agreement: the output values of all the fault-free nodes are equal, i.e., there exists y such
that, for every fault-free node i, yi = y.

• Validity: if the source node is fault-free, then for every fault-free node i, the output value
equals the source’s input, i.e., y = xs.

The proof follows from the proof of Theorem 1 and the observation that all the outgoing neighbors
of s receive identical value from s, which equals its input xs when s is fault-free.

4.3 Asynchronous Network

In our analysis so far, we have assumed that the system is synchronous. For a point-to-point
network with fault-free source s, it should be easy to see that the condition in Theorem 1 is also
necessary and sufficient to achieve agreement using a CPA-like under the asynchronous model [2]
as well. In this case, the algorithm may not proceed in rounds, but a node still commits to value
x either on receiving the value directly from s, or from f + 1 nodes.

This claim may seem to contradict the FLP result [3]. However, our claim assumes that the
source node is fault-free, unlike [3].

5 Conclusion

In this paper, we explore broadcast using the CPA algorithm in presence of Byzantine faults. In
particular, we provide a tight necessary and sufficient condition for the correctness of CPA.
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