
Asynchronous Convex Hull Consensus
in the Presence of Crash Faults∗

Lewis Tseng
Department of Computer Science
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
ltseng3@illinois.edu

Nitin H. Vaidya
Department of Electrical and Computer

Engineering
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
nhv@illinois.edu

ABSTRACT
This paper defines a new consensus problem, convex hull
consensus. The input at each process is a d-dimensional
vector of reals (or, equivalently, a point in the d-dimensional
Euclidean space), and the output at each process is a con-
vex polytope contained within the convex hull of the inputs
at the fault-free processes. We explore the convex hull con-
sensus problem under crash faults with incorrect inputs, and
present an asynchronous approximate convex hull consensus
algorithm with optimal fault tolerance that reaches consen-
sus on an optimal output polytope.
Convex hull consensus can be used to solve other related

problems. For instance, a solution for convex hull consen-
sus trivially yields a solution for vector (multidimensional)
consensus. More importantly, convex hull consensus can po-
tentially be used to solve other more interesting problems,
such as function optimization.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: [Distributed applications]

General Terms
Algorithm, Theory

Keywords
Convex hull consensus, vector inputs, asynchronous system,
crash faults

1. INTRODUCTION
∗This research is supported in part by National Science
Foundation awards 1059540 and 1329681. Any opinions,
findings, and conclusions or recommendations expressed
here are those of the authors and do not necessarily reflect
the views of the funding agencies or the U.S. government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’14, July 15–18, 2014, Paris, France.
Copyright 2014 ACM 978-1-4503-2944-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2611462.2611470.

The distributed consensus problem has received signifi-
cant attention over the past three decades [3]. The tra-
ditional consensus problem formulation assumes that each
process has a scalar input. As a generalization of this prob-
lem, recent work [13, 20, 19] has addressed vector consensus
(also called multidimensional consensus) in the presence of
Byzantine faults, wherein each process has a d-dimensional
vector of reals as input, and the processes reach consensus
on a d-dimensional vector within the convex hull of the in-
puts at fault-free processes (d ≥ 1). In the discussion below,
it will be more convenient to view a d-dimensional vector as
a point in the d-dimensional Euclidean space.

This paper defines the problem of convex hull consensus.
Similar to vector consensus, the input at each process is a
point in the d-dimensional Euclidean space. However, for
convex hull consensus, the output at each process is a con-
vex polytope contained within the convex hull of the inputs
at the fault-free processes. Intuitively, the goal is to reach
consensus on the “largest possible” polytope within the con-
vex hull of the inputs at fault-free processes, allowing the
processes to estimate the domain of inputs at the fault-free
processes. In some cases, the output convex polytope may
consist of just a single point, but in general, it may contain
an infinite number of points.

Convex hull consensus may be used to solve other related
problems. For instance, a solution for convex hull consensus
trivially yields a solution for vector consensus [13, 20]. More
importantly, convex hull consensus can potentially be used
to solve other more interesting problems, such as function
optimization with the convex hull of the inputs at fault-free
processes as the domain. We will discuss the application of
convex hull consensus to function optimization in Section 7.

We first describe our fault and system models, and then
formally define the convex hull consensus problem.

Fault model:
We assume the crash faults with incorrect inputs [6, 3]

fault model. In this model, each faulty process have an in-
correct input, and may crash. A faulty process performs the
algorithm faithfully, using an incorrect input, until it (pos-
sibly) crashes. The implication of an incorrect input will
be clearer when we formally define convex hull consensus
below. We assume that at most f processes may be faulty.
All fault-free processes have correct inputs. Since this model
assumes incorrect inputs at faulty processes, the simulation
techniques in [6, 3] can be used to transform an algorithm
designed for this fault model to an algorithm for tolerating

Byzantine faults. For brevity, we do not discuss this trans-
formation, which requires n ≥ 3f + 1. (A Byzantine convex
hull consensus algorithm is also presented in our technical
report [15].) Our results extend naturally to the more com-
monly used crash fault model wherein faulty processes also
have correct inputs (we will refer to the latter model as crash
faults with correct inputs). For brevity, the extension is pre-
sented in our technical report [16].

System model:
The system under consideration is asynchronous, and con-

sists of n processes. Let the set of processes be denoted
as V = {1, 2, · · · , n}. All processes can communicate with
each other. Thus, the underlying communication network is
modeled as a complete graph. Similar to prior work (e.g.,
[7, 6, 20]), we assume that communication channels are reli-
able and FIFO (first-in first-out). Each message is delivered
exactly once on each channel. The input at process i, de-
noted as xi, is a point in the d-dimensional Euclidean space
(equivalently, a d-dimensional vector of real numbers).

Convex hull consensus:
The FLP impossibility of reaching exact consensus in asyn-

chronous systems with crash faults [9] extends to the prob-
lem of convex hull consensus as well. Therefore, we consider
approximate convex hull consensus. An approximate convex
hull consensus algorithm must satisfy the following proper-
ties:

• Validity: The output (or decision) at each fault-free
process must be a convex polytope in the convex hull
of correct inputs. Note that under the crash fault with
incorrect inputs model, the input at any faulty process
is incorrect.

• ϵ-Agreement: For a given constant ϵ > 0, the Haus-
dorff distance (defined below) between the output poly-
topes at any two fault-free processes must be at most
ϵ.

• Termination: Each fault-free process must terminate
within a finite amount of time.

Moreover, the goal of the algorithm is to maximize the size
of the output convex polytope at each fault-free process.

Distance metrics:

• dE(p, q) denotes the Euclidean distance between points
p and q. All points and polytopes in our discussion
belong to a d-dimensional Euclidean space, for some
d ≥ 1, even if this is not always stated explicitly.

• For two convex polytopes h1, h2, the Hausdorff dis-
tance dH(h1, h2) is defined as follows [11].

dH(h1, h2) = max { max
p1∈h1

min
p2∈h2

dE(p1, p2),

max
p2∈h2

min
p1∈h1

dE(p1, p2)}

(1)

Optimality of approximate convex hull consensus:
The algorithm proposed in this paper is optimal in two

ways. It requires an optimal number of processes to tolerate
f faults, and it decides on a convex polytope that is optimal
in a “worst-case sense”, as elaborated below:

• Prior work on approximate vector consensus mentioned
earlier [13, 20] showed that n ≥ (d+ 2)f + 1 is neces-
sary to solve that problem in an asynchronous system
consisting of n processes with at most f Byzantine
faults. Although these prior papers dealt with Byzan-
tine faults, it turns out that their proof of lower bound
on n (i.e., lower bound of (d+2)f +1) is also directly
applicable to approximate vector consensus under the
crash fault with incorrect inputs model used in our
present work. Thus, n ≥ (d + 2)f + 1 is a necessary
condition for vector consensus under this fault model.
Secondly, it is easy to show that an algorithm for ap-
proximate convex hull consensus can be transformed
into an algorithm for approximate vector consensus.
Therefore, n ≥ (d + 2)f + 1 is a necessary condition
for approximate convex hull consensus as well. For
brevity, we omit a formal proof of the lower bound,
and our subsequent discussion under the crash faults
with incorrect inputs model assumes that

n ≥ (d+ 2)f + 1 (2)

Our algorithm is correct under this condition, and thus
achieves optimal fault resilience. For crash faults with
correct inputs, a smaller n suffices, as discussed in our
technical report [16].

• In this paper, we only consider deterministic algorithms.
A convex hull consensus algorithm A is said to be op-
timal if the following condition is true:

Let F denote a set of up to f faulty processes. For
a given execution of algorithm A with F being the
set of faulty processes, let yi(A) denote the out-
put polytope at process i at the end of the given
execution. For any other convex hull consensus al-
gorithm B, there exists an execution with F being
the set of faulty processes, such that yi(B) is the
output at fault-free process i, and yj(B) ⊆ yj(A)
for each fault-free process j.

The goal here is to decide on an output polytope that
includes as much of the convex hull of all correct in-
puts as possible. However, since any process may be
potentially faulty (with incorrect input), the output
polytope can be smaller than the convex hull of all
correct inputs. Intuitively speaking, the optimality
condition says that an optimal algorithm should de-
cide on a convex region that is no smaller than that
decided in a worst-case execution of algorithm B. In
Section 6, we will show that our proposed algorithm is
optimal in the above sense.

Summary of main contributions of the paper:

• The paper introduces the problem of convex hull con-
sensus. We believe that feasibility of convex hull con-
sensus can be used to infer feasibility of other interest-
ing problems as well, e.g., function optimization.

• We present an approximate convex hull consensus al-
gorithm in asynchronous systems, and show that it
achieves optimality in terms of its resilience, and also
in terms of the convex polytope that it decides on.

• We apply convex hull consensus algorithm to solve the
problem of optimizing a function over the convex hull
of the inputs at fault-free processes. We also prove
an impossibility result pertaining to function optimiza-
tion with any arbitrary cost function under crash faults
in asynchronous systems.

2. RELATED WORK
Many researchers in the decentralized control area, in-

cluding Bertsekas and Tsitsiklis [4] and Jadbabaei, Lin and
Morse [12], have explored approximate consensus in the ab-
sence of faults, using only near-neighbor communication in
systems wherein the communication graph may be partially
connected and time-varying. The structure of the proof of
correctness of the algorithm presented in this paper, and our
use of well-known matrix analysis results [21], is inspired by
the above prior work. We have also used similar proof struc-
tures in our prior work on other (Byzantine) consensus algo-
rithms [17, 19, 18]. With regards to the proof technique, this
paper’s contribution is to show how the above proof struc-
ture can be extended to the case when the process state
consists of convex polytopes.
Dolev et al. addressed approximate Byzantine consensus

in both synchronous and asynchronous systems [7] (with
scalar input). Subsequently, Coan proposed a simulation
technique to transform consensus algorithms that are re-
silient to crash faults into algorithms tolerating Byzantine
faults [6, 3]. Abraham, Amit and Dolev proposed an algo-
rithm for approximate Byzantine consensus [1]. The recent
work of Mendes and Herlihy [13] and Vaidya and Garg [20]
has addressed approximate vector consensus in the presence
of Byzantine faults. This work has yielded lower bounds
on the number of processes, and algorithms with optimal
resilience for asynchronous [13, 20] as well as synchronous
systems [20] modeled as complete graphs. Subsequent work
[19] has explored the vector consensus problem in incomplete
graphs.
Herlihy et al. [10] introduced the problem of Barycen-

tric agreement. Barycentric agreement has some similarity
to convex hull consensus, in that the output of Barycen-
tric agreement is not limited to a single value (or a single
point). However, the correctness conditions and assump-
tions on possible input values for Barycentric agreement are
different from those of our convex hull consensus problem.

3. PRELIMINARIES
Some notations introduced in the paper are summarized

in Appendix A. In this section, we introduce functions H,
L, and a communication primitive used in our algorithm.

Definition 1. For a multiset of points X, H(X) is the
convex hull of the points in X.

A multiset contain the same element more than once.

Definition 2. Function L: Suppose that ν non-empty
convex polytopes h1, h2, · · · , hν , and ν weights c1, c2, · · · , cν
are given such that 0 ≤ ci ≤ 1 and

∑ν
i=1 ci = 1. Linear

combination of these convex polytopes

L([h1, h2, · · · , hν] ; [c1, c2, · · · , cν])

is defined as follows:

p ∈ L([h1, h2, · · · , hν]; [c1, c2, · · · , cν]) if and only if
for 1 ≤ i ≤ ν, there exists

pi ∈ hi, such that p =
∑

1≤i≤ν

cipi (3)

Because hi’s above are all convex and non-empty,
L([h1, h2, · · · , hν] ; [c1, c2, · · · , cν]) is also a convex non-
empty polytope. (The proof is straightforward.) The pa-
rameters for L consist of two vectors, with the elements of
the first vector being polytopes, and the elements of the
second vector being the corresponding weights in the linear
combination. With a slight abuse of notation, we will also
specify the vector of polytopes as a multiset – in such cases,
we will always assign an identical weight to all the polytopes
in the multiset, and hence their ordering is not important.

Stable vector communication primitive:
As seen later, our algorithm proceeds in asynchronous

rounds. In round 0 of the algorithm, the processes use a
communication primitive called stable vector [2, 10], to try to
learn each other’s inputs. Stable vector was originally devel-
oped in the context of crash faults [2] and was later applied
to solve Byzantine Barycentric agreement [10]. To achieve
its desirable properties (listed below), stable vector requires
at least 2f+1 processes when each process either follows the
algorithm faithfully or crashes. Since in our crash fault with
incorrect inputs model, each process follows the algorithm
unless it crashes, the properties of stable vector listed below
will hold in our context, provided that n ≥ 2f+1. As noted
earlier in Section 1, n ≥ (d + 2)f + 1 is a necessary condi-
tion for approximate convex hull consensus in the presence
of crash faults with incorrect inputs. Then, with d ≥ 1, we
have n ≥ 3f + 1, and the properties of stable vector below
will hold.

In round 0 of our algorithm, each process i first broadcasts
a message consisting of the tuple (xi, i, 0), where xi is process
i’s input. In this tuple, 0 indicates the (asynchronous) round
index. Process i then waits for the stable vector primitive to
return a set Ri containing round 0 messages. We will rely
on the following properties of the stable vector primitive,
which are implied by results proved in prior work [2, 10].

• Liveness: At each process i that does not crash be-
fore the end of round 0, stable vector returns a set Ri

containing at least n − f distinct tuples of the form
(x, k, 0).

• Containment: For processes i, j that do not crash
before the end of round 0, let Ri, Rj be the set of
messages returned to processes i, j by stable vector
in round 0, respectively. Then, either Ri ⊆ Rj or
Rj ⊆ Ri. (Also, by the previous property, |Ri| ≥ n−f
and |Rj | ≥ n− f .)

Please refer to [2, 10] for the implementation of the stable
vector primitive.

4. PROPOSED ALGORITHM
The proposed algorithm, named Algorithm CC, proceeds

in asynchronous rounds. The input at each process i is
named xi. The initial round of the algorithm is called round
0. Subsequent rounds are named round 1, 2, 3, etc. In
each round t ≥ 0, each process i computes a state variable

hi, which represents a convex polytope in the d-dimensional
Euclidean space. We will refer to the value of hi at the end
of the t-th round performed by process i as hi[t], t ≥ 0.
Thus, for t ≥ 1, hi[t − 1] is the value of hi at the start
of the t-th round at process i. The algorithm terminates
after tend rounds, where tend is a constant defined later in
equation (19). The state hi[tend] of each fault-free process i
at the end of tend rounds is its output (or decision) for the
consensus algorithm.
Xi and Yi[t] defined on lines 4 and 13 of the algorithm

below are both multisets. A given value may occur multi-
ple times in a multiset. Also, the intersection in line 5 is
over the convex hulls of the subsets of multiset Xi of size
|Xi| − f (note that each of these subsets is also a multiset).
Elements of Xi are points in the d-dimensional Euclidean
space, whereas elements of Yi[t] are convex polytopes. In
line 14, Yi[t] specifies the multiset of polytopes whose linear
combination is obtained using L; all the weights specified as
parameters to L here are equal to 1/|Yi[t]|

Algorithm CC: Steps performed at process i shown below.

Initialization: All sets used below are initialized to ∅.

Round 0 at process i:

• On entering round 0: 1

Send (xi, i, 0) to all the processes 2

• When stable vector returns a set Ri: 3

Multiset Xi := {x | (x, k, 0) ∈ Ri} 4

hi[0] := ∩C⊆Xi, |C|=|Xi|−f H(C) 5

Proceed to Round 1 6

Round t ≥ 1 at process i:

• On entering round t ≥ 1: 7

MSGi[t] := MSGi[t] ∪ (hi[t− 1], i, t) 8

Send (hi[t− 1], i, t) to all other processes 9

• When message (h, j, t) is received from j ̸= i 10

MSGi[t] := MSGi[t] ∪ {(h, j, t)} 11

• When |MSGi[t]| ≥ n− f for the first time: 12

Multiset Yi[t] := {h | (h, j, t) ∈ MSGi[t]} 13

hi[t] := L(Yi[t] ; [1
|Yi[t]|

, · · · , 1
|Yi[t]|

]) 14

If t < tend, then proceed to Round t+ 1 15

Note that stable vector is only used in Round 0. As will
be seen later in Section 6, to achieve optimality of the size
of the output polytope, it is important for the intersection
of multiset Xi (at line 4) at each fault-free process i to be
as large as possible. This property is ensured by receiving
messages using stable vector. In later rounds, the goal is to
achieve convergence, and in this case, exchanging messages
over the reliable channels is enough.

5. CORRECTNESS OF ALGORITHM CC
In this section, we prove that Algorithm CC satisfies Va-

lidity, ϵ-Agreement, and Termination properties. The use
of matrix representation in our correctness proof below is
inspired by the prior work on non-fault-tolerant consensus
(e.g., [12, 4]). We have also used such a proof structure in
our work on Byzantine consensus [17, 19, 18]. The main
differences in this proof are: (i) the state at each process is
now a convex polytope (instead of a point), and (ii) the mul-
tiplication operation on a vector of convex polytopes and a
vector of scalar is now defined using function L (introduced
in Section 3).

We now introduce more notations (some of the notations
are summarized in Appendix A) and two lemmas:

• For a given execution of the proposed algorithm, let F
denote the actual set of faulty processes in that execu-
tion. Processes in F have incorrect inputs, and they
may potentially crash.

• For round r ≥ 0, let F [r] denote the set of faulty pro-
cesses that have crashed before sending any round r
messages. Since the algorithm terminates after round
tend, we define for t > tend, F [t] = F [tend]. Note that
F [r] ⊆ F [r + 1] ⊆ F .

Lemma 1. Algorithm CC ensures progress: (i) all the
fault-free processes will eventually progress to round 1; and,
(ii) if all the fault-free processes progress to the start of round
t (tend ≥ t ≥ 1), then all the fault-free processes will even-
tually progress to the start of round t+ 1.

Proof of Lemma 1 is trivial and is presented in [16].

Lemma 2. For each process i ∈ V − F [1], the polytope
hi[0] is non-empty and convex.

Proof of Lemma 2 is presented in Appendix B.

5.1 Matrix Preliminaries
We now introduce some matrix notation and terminology

to be used in our proof. Boldface upper case letters are
used below to denote matrices, rows of matrices, and their
elements. For instance, A denotes a matrix, Ai denotes the
i-th row of matrix A, and Aij denotes the element at the
intersection of the i-th row and the j-th column of matrix
A. A vector is said to be stochastic if all its elements are
non-negative, and the elements add up to 1. A matrix is said
to be row stochastic if each row of the matrix is a stochastic
vector [12]. For matrix products, we adopt the “backward”
product convention below, where a ≤ b,

Πb
τ=aA[τ] = A[b]A[b− 1] · · ·A[a] (4)

Let v be a column vector of size n whose elements are convex
polytopes. The i-th element of v is vi. Let A be a n×n row
stochastic square matrix. We define the product of Ai (the
i-th row of A) and v as follows using function L defined in
Section 3.

Aiv = L(vT ; Ai) (5)

where T denotes the transpose operation. The above prod-
uct is a polytope in the d-dimensional Euclidean space. Prod-
uct of matrix A and v is then defined as follows:

Av = [A1v A2v · · · Anv]T (6)

Due to the transpose operation above, the product Av is a
column vector consisting of n polytopes.
We describe how to represent Algorithm CC using a ma-

trix form. Let v[t] (tend ≥ t ≥ 0), denote a column vector of
length n. In the remaining discussion, we will refer to v[t] as
the state of the system at the end of round t. In particular,
vi[t] for i ∈ V is viewed as the state of process i at the end
of round t. We define v[0] as follows as initialization of the
state vector:

(I1) For each process i ∈ V − F [1], vi[0] := hi[0]. Recall
that hi[0] is the convex hull computed at process i at
line 5 in Algorithm CC.

(I2) For each process k ∈ F [1], first pick any one fault-free
process m ∈ V −F ⊆ V −F [1], and then vk[0] is arbi-
trarily defined to be equal to hm[0]. Such an arbitrary
choice suffices because the state vk[0] for k ∈ F [1] does
not impact future state of any other process (by defi-
nition, processes in F [1] do not send any messages in
round 1 and beyond).

We will show that the state evolution of Algorithm CC
can be expressed using matrix form as in (7) below, where
M[t] is an n × n matrix with certain desirable properties.
The state vk[t] of process k ∈ F [t] is not meaningful, since
process k has crashed before sending any round t messages.
However, (7) assigns it a value for convenience of analysis.
M[t] is said to be the transition matrix for round t.

v[t] = M[t] v[t− 1], tend ≥ t ≥ 1 (7)

In particular, given an execution of the algorithm, we con-
struct the transition matrix M[t] for round t ≥ 1 of that ex-
ecution using the two rules below (Rule 1 and Rule 2). Ele-
ments of row Mi[t] will determine the state vi[t] of process i
(specifically, vi[t] = Mi[t]v[t−1]). Note that Rule 1 applies
to processes in V −F [t+ 1]. Each process i ∈ V −F [t+ 1]
survives at least until the start of round t+ 1, and sends at
least one message in round t + 1. Therefore, its state vi[t]
at the end of round t is of consequence. On the other hand,
processes in F [t+1] crash sometime before sending any mes-
sages in round t+ 1 (possibly crashing in previous rounds).
Thus, their states at the end of round t are not relevant to
the fault-free processes anymore, and hence Rule 2 defines
the entries of the corresponding rows of M[t] somewhat ar-
bitrarily.

Construction of Transition Matrix M[t] for tend ≥ t ≥ 1:

In the matrix specification below, MSGi[t] is the message set
at the point where Yi[t] is defined on line 13 of the algorithm.
Thus, Yi[t] := {h | (h, j, t) ∈ MSGi[t]}, and |MSGi[t]| = |Yi[t]|.

• Rule 1: For each process i ∈ V − F [t + 1], and each
k ∈ V :

If a round t message from process k (of the form
(∗, k, t)) is in MSGi[t], then

Mik[t] :=
1

|MSGi[t]|
(8)

Otherwise,

Mik[t] := 0 (9)

• Rule 2: For each process j ∈ F [t+1], and each k ∈ V ,

Mjk[t] :=
1

n
(10)

Observe that by design, M[t] is a row stochastic matrix.

Theorem 1. For t ≥ 1, define v[t] = M[t]v[t − 1], with
M[t] as specified above. Then, for τ ≥ 0, and for all i ∈
V −F [τ + 1], vi[τ] equals hi[τ].

The proof is presented in Appendix C. The above the-
orem states that, for tend ≥ t ≥ 1, equation (7), that is,
v[t] = M[t]v[t − 1], correctly characterizes the state of the
processes that have not crashed before the end of round t.
For processes that have crashed, their states are not rele-
vant, and could be assigned any arbitrary value for analyt-
ical purposes (this is what Rule 2 above effectively does).
Given the matrix product definition in (6), and by repeated
application of the state evolution equation (7), we obtain

v[t] =
(
Πt

τ=1M[τ]
)
v[0], t ≥ 1 (11)

Recall that we adopt the “backward” matrix product con-
vention presented in (4). Then, (11) follows from the obser-
vation that M[τ](M[τ−1]v[τ−2]) = (M[τ]M[τ−1])v[τ−2].

5.2 Correctness Proof

Definition 3. A polytope is valid if it is contained in the
convex hull of the inputs of fault-free processes.

Now, we present three lemmas that are used in the correct-
ness proof below. The following lemma specifies the prop-
erties of the multiplication of a series of transition matrices
M[τ] constructed using the procedure above.

Lemma 3. For t ≥ 1, let P[t] = Πt
τ=1 M[τ]. Then,

• P[t] is a row stochastic matrix.

• For i, j ∈ V − F , and k ∈ V ,

∥Pik[t]−Pjk[t] ∥ ≤
(
1− 1

n

)t

(12)

where ∥a∥ denotes absolute value of real number a.

Proof Sketch: First observe that (i) M[τ] is a row stochas-
tic matrix by construction, and (ii) due to the assump-
tion that n ≥ 3f + 1, for i, j ∈ V − F [t + 1], there ex-
ists a fault-free process g(i, j) such that Mig(i,j)[t] ≥ 1/n
and Mjg(i,j)[t] ≥ 1/n. Then, from these two observations,
Lemma 3 can be proved using the convergence analysis of
multiplication of row stochastic matrices based on the coef-
ficients of ergodicity [12, 21]. The proof is omitted due to
lack of space, and is presented in [16]. 2

Lemma 4. hi[0] for each process i ∈ V −F [1] is valid.

Lemma 5. Suppose non-empty convex polytopes h1, · · · , hν

are all valid. Consider ν constants c1, c2, · · · , cν such that
0 ≤ ci ≤ 1 and

∑ν
i=1 ci = 1. Then the linear combination of

these convex polytopes, L([h1, h2, · · · , hν] ; [c1, c2, · · · , cν]),
is convex, non-empty, and valid.

The proofs of Lemmas 4 and 5 are trivial, and are pre-
sented in [16].

Theorem 2. Algorithm CC satisfies the validity,
ϵ-agreement and termination properties.

Proof. We prove that Algorithm CC satisfies the va-
lidity, ϵ-agreement and termination properties after a large
enough number of asynchronous rounds.
Repeated applications of Lemma 1 ensures that the fault-

free processes will progress from round 0 through round r,
for any r ≥ 0, allowing us to use (11). Consider round t ≥ 1.
Let

P[t] = Πt
τ=1M[τ] (13)

Validity:
We prove validity using the series of observations below:

• Observation 1: By Lemma 2 and Lemma 4, hi[0] for
each i ∈ V − F [1] is non-empty and valid. Also, each
such hi[0] is convex by construction (line 5 of Algo-
rithm CC).

• Observation 2: As per the initialization step (I1) in
Section 5, for each i ∈ V − F [1], vi[0] := hi[0]; thus,
by Observation 1 above, for each such process i, vi[0]
is convex, valid and non-empty. Also, in initialization
step (I2), for each process k ∈ F [1], we set vk[0] :=
hm[0], where m is a fault-free process; thus, by Obser-
vation 1, for each such process k, vk[0] is convex, valid
and non-empty. Therefore, each element of v[0] is a
non-empty, convex and valid polytope.

• Observation 3: By Lemma 3, P[t] is a row stochastic
matrix. Thus, elements of each row of P[t] are non-
negative and add up to 1. Therefore, by Observation
2 above, and Lemma 5, Pi[t]v[0] for each i ∈ V −F is
valid, convex and non-empty. Also, by Theorem 1, and
equation (11), hi[t] = P[t]v[0] for i ∈ V − F . Thus,
hi[t] is valid, convex and non-empty for t ≥ 1.

Therefore, Algorithm CC satisfies the validity property.

ϵ-Agreement and Termination:
Processes in F [1] do not send any messages to any other

process in round 1 and beyond. Thus, by the construction
of M[t], for each a ∈ V − F [1] and b ∈ F [1], Mab[t] = 0 for
all t ≥ 1; it then follows that Pab[t] = 0 as well.1

Consider fault-free processes i, j ∈ V − F . The previous
paragraph implies that, for any point qi in hi[t] = vi[t] =
Pi[t]v[0], there must exist, for all k ∈ V − F [1], pk ∈ hk[0],
such that

qi =
∑

k∈V −F[1]

Pik[t]pk (14)

Using points pk in the above equation, now choose point
qj in hj [t] defined as follows.

qj =
∑

k∈V −F[1]

Pjk[t]pk (15)

For points pk, denote by pk(l) the value of pk’s l-th coor-
dinate. Then, (14) and (15) imply the following equalities
for d ≥ l ≥ 1, respectively:

1Claim 1 in Appendix D relates to this observation.

qi(l) =
∑

k∈V −F[1]

Pik[t]pk(l) (16)

and

qj(l) =
∑

k∈V −F[1]

Pjk[t]pk(l) (17)

Recall that the Euclidean distance between qi and qj is
dE(qi, qj). From Lemma 3, (16) and (17), we have the fol-
lowing:

dE(qi, qj) =

√√√√ d∑
l=1

(qi(l)− qj(l))2

=

√√√√√ d∑
l=1

 ∑
k∈V −F[1]

Pik[t]pk(l)−
∑

k∈V −F[1]

Pjkpk(l)

2

=

√√√√√ d∑
l=1

 ∑
k∈V −F[1]

(Pik[t]−Pjk[t])pk(l)

2

≤

√√√√√ d∑
l=1

(1− 1

n

)2t
 ∑

k∈V −F[1]

∥pk(l)∥

2

=

(
1− 1

n

)t

√√√√√ d∑
l=1

 ∑
k∈V −F[1]

∥pk(l)∥

2

The second equality above is due to (16) and (17), and the
fourth inequality is due to Lemma 3.

Define

Ω = max
pk∈hk[0],k∈V −F[1]

√√√√ d∑
l=1

(
∑

k∈V −F[1]

∥pk(l)∥)2

Therefore, dE(qi, qj) is upper bounded by

(
1− 1

n

)t

√√√√√ d∑
l=1

 ∑
k∈V −F[1]

∥pk(l)∥

2

≤ (1− 1

n
)t Ω (18)

Because the hk[0]’s in the definition of Ω are all valid (by
Lemma 4), Ω can itself be upper bounded by a function
of the input vectors at the fault-free processes. In partic-
ular, under the assumption that each element of fault-free
processes’ input vectors is upper bounded by U and lower
bounded by µ, Ω is upper bounded by

√
dn2 max(U2, µ2).

Observe that the upper bound on the right-hand-side of (18)
monotonically decreases with t, because 1 − 1

n
< 1. Define

tend as the smallest positive integer t for which(
1− 1

n

)t √
dn2 max(U2, µ2) < ϵ (19)

Recall that the algorithm terminates after tend rounds. Since
tend is finite, the algorithms satisfies the termination condi-
tion.

(18) and (19) together imply that, for fault-free processes
i, j and for each point qi ∈ hi[tend], there exists a point
qj [t] ∈ hj [tend], such that dE(qi, qj) < ϵ (and, similarly,
vice-versa). Thus, by Definition of Hausdorff distance,
dH(hi[tend], hj [tend]) < ϵ. Since this holds true for any pair
of fault-free processes i, j, the ϵ-agreement property is sat-
isfied at termination.

Even though we only show that validity and ϵ-agreement
properties hold for fault-free processes, these two properties
hold for all processes that do not crash before completing
the algorithm.

6. OPTIMALITY OF ALGORITHM CC
Due to the Containment property of stable vector men-

tioned in Section 3, the set Z defined below contains at least
n − f messages. Recall that set Ri is defined on line 3 of
Algorithm CC.

Z := ∩i∈V −F Ri (20)

Define multiset XZ := {x | (x, k, 0) ∈ Z}. Then, define a
convex polytope IZ as follows.

IZ := ∩D⊂XZ ,|D|=|XZ |−f H(D) (21)

Now we establish a “lower bound” on output at the fault-
free processes.

Lemma 6. For all i ∈ V −F [t+1] and t ≥ 0, IZ ⊆ hi[t].

Lemma 6 is proved in Appendix D. The following theorem
is proved in Appendix E using Lemma 6.

Theorem 3. Algorithm CC is optimal under the notion
of optimality in Section 1.

Degenerate cases:
In some cases, the output polytope at fault-free processes

may be a single point, making the output equivalent to that
obtained from vector consensus [13, 20]. As a trivial ex-
ample, this occurs when all the fault-free processes have
identical input. It is possible to identify scenarios when the
number of processes is exactly equal to the lower bound, i.e.,
n = (d+2)f+1 processes, when the output polytope consists
of just a single point. However, in general, particularly when
n is larger than the lower bound, the output polytopes will
contain infinite number of points. In any event, as shown in
Theorem 3, our algorithm achieves optimality in all cases.
Thus, any other algorithm can also produce such degenerate
outputs for the same inputs.

7. CONVEX HULL
FUNCTION OPTIMIZATION

The goal of convex hull function optimization is to mini-
mize a cost function, say function c, over a domain consist-
ing of the convex hull of the correct inputs. Formally, the
following four properties must be satisfied by the function
optimization algorithm:

• Validity: output yi at fault-free process i is a point
in the convex hull of the correct inputs.

• ϵ-Agreement: for any constant ϵ > 0, for any fault-
free processes i, j, dE(yi, yj) < ϵ.

• Weak β-Optimality: (i) for any constant β > 0, for
any fault-free processes i, j, ∥c(yi) − c(yj)∥ < β, and
(ii) if at least 2f + 1 processes (faulty or fault-free)
have an identical input, say x, then for any fault-free
process i, c(yi) ≤ c(x).

• Termination: each fault-free process must terminate
within a finite amount of time.

The intuition behind part (ii) of the weak optimality con-
dition above is as follows. When 2f + 1 processes have an
identical input, say x∗, even if f of them are slow (or crash),
each fault-free process must be able to learn that f +1 pro-
cesses have input x∗, and at least one of these f+1 processes
must be fault-free. Therefore, each fault-free process would
know that the minimum value of the cost function over the
convex hull of the correct inputs is at most c(x∗).

It turns out that it is not feasible to simultaneously reach
(approximate) consensus on a point, and to ensure that the
cost function at that point is “small enough” for any arbi-
trary cost function.2 The theorem below states this obser-
vation more formally.

Theorem 4. The four properties of convex hull function
optimization cannot be satisfied simultaneously in an asyn-
chronous system in the presence of crash faults with incorrect
inputs for n ≥ 4f + 1 and d ≥ 1.

The proof of Theorem 4 is presented in Appendix F. We
know that even without the weak β-optimality, we need n ≥
(d + 2)f + 1. Thus, the impossibility result is complete for
d ≥ 2. Whether the impossibility extends to 3f+1 ≤ n ≤ 4f
and d = 1 is presently unknown.

The natural question then is “What function optimiza-
tion problem can we solve?” Suppose that the cost function
satisfies b-Lipschitz continuity. That is, for any points x, y,
∥c(x)− c(y)∥ ≤ bdE(x, y). Below, we present an algorithm
that achieves validity, weak β-optimality and termination,
but not ϵ-agreement. The proposed algorithm has two sim-
ple steps:

• Step 1: First solve convex hull consensus with param-
eter ϵ. Let hi be the output polytope of convex hull
consensus at process i.

• Step 2: The output of function optimization is the
tuple (yi, c(yi)), where yi = argminx∈hi c(x). When
there are multiple points in hi minimizing c(x), break
tie arbitrarily.

The ϵ-agreement property of the convex hull consensus to-
gether with the assumption of b-Lipschitz continuity imply
that for fault-free processes i, j, ∥c(yi)− c(yj)∥ < ϵb. Thus,
the fault-free processes find approximately equal minimum
value for the function. Therefore, for any β > 0, we can
achieve ∥c(yi) − c(yj)∥ < β by choosing ϵ = β/b for convex
hull consensus in Step 1. Validity and termination follow
directly form the properties of the convex hull consensus
algorithm. Note that since in step 2, processes break tie
arbitrarily, we are not able to guarantee that dE(yi, yj) is

2Impossibility result can be easily extended to the case when
condition (ii) is relaxed as follows: c(yi) ≤ c(x) + β′ for
some β′ > 0. For brevity, we consider only the case when
c(yi) ≤ c(x) in this work.

small. That is, ϵ-agreement may not hold. However, we
believe that when the cost function is D-strongly convex [5]
and differentiable, it can be shown that the 2-step algorithm
above not only achieves validity, weak β-optimality and ter-
mination, but also ensures that dE(yi, yj) is bounded by a
function of ϵ, b and D. We have some preliminary analysis,
but a formal proof has not been developed.

Notion of Optimality:
Observe that in the 2-step algorithm above, c(yi) at pro-

cess i may not be minimum over the entire convex hull of
the inputs of fault-free processes. For instance, even when
all the processes are fault-free, each subset of f processes
is viewed as possibly faulty with incorrect inputs. We can
extend the notion of optimality from Section 1 to function
optimization as follows. An algorithm A for function opti-
mization is said to be optimal if the following condition is
true.

Let F denote a set of up to f faulty processes. For
a given execution of algorithm A with F being the
set of faulty processes, let yi(A) denote the output at
process i at the end of the given execution. For any
other algorithm B, there exists an execution with F
being the set of faulty processes, such that yi(B) is the
output at fault-free process i, and c(yj(A)) ≤ c(yj(B))
for each fault-free process j.

The intuition behind the above formulation is as follows. A
goal of function optimization here is to allow the processes
to “learn” the smallest value of the cost function over the
convex hull of the inputs at the fault-free processes. The
above condition implies that an optimal algorithm will learn
a function value that is no larger than that learned in a
worst-case execution of any other algorithm.
The 2-step function optimization algorithm above is op-

timal in the above sense. This is a direct consequence of
Theorem 3.

8. SUMMARY
We introduce the convex hull consensus problem under

crash faults with incorrect inputs model, and present an
asynchronous approximate convex hull consensus algorithm
with optimal fault tolerance that reaches consensus on an
optimal output polytope. We also consider the use of convex
hull consensus algorithm to solve the problem of optimizing
a function over the convex hull of the inputs at fault-free
processes. An impossibility result for asynchronous function
optimization for arbitrary cost functions is also presented.

9. ACKNOWLEDGMENTS
We acknowledge Eli Gafni for his comments on our pre-

vious work [20] that inspired us to reduce the convex hull
consensus algorithm from Byzantine [15] to crash faults. We
also thank anonymous reviewers for their insightful com-
ments.

10. REFERENCES
[1] I. Abraham, Y. Amit, and D. Dolev. Optimal

resilience asynchronous approximate agreement. In
OPODIS, pages 229–239, 2004.

[2] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and
R. Reischuk. Renaming in an asynchronous
environment. Journal of the ACM, July 1990.

[3] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations, and Advanced Topics.
Wiley Series on Parallel and Distributed Computing,
2004.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and
Distributed Computation: Numerical Methods.
Optimization and Neural Computation Series. Athena
Scientific, 1997.

[5] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY, USA,
2011.

[6] B. A. Coan. A compiler that increases the fault
tolerance of asynchronous protocols. IEEE Trans.
Comput., 37(12):1541–1553, Dec. 1988.

[7] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and
W. E. Weihl. Reaching approximate agreement in the
presence of faults. J. ACM, 33:499–516, May 1986.

[8] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy
impossibility proofs for distributed consensus
problems. In Proceedings of the fourth annual ACM
symposium on Principles of distributed computing,
PODC ’85, pages 59–70, New York, NY, USA, 1985.
ACM.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32:374–382, April 1985.

[10] M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed
Computing Through Combinatorial Topology. Elsevier
Science, 2013.

[11] D. Huttenlocher, G. Klanderman, and W. Rucklidge.
Comparing images using the Hausdorff distance.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 15(9):850–863, 1993.

[12] A. Jadbabaie, J. Lin, and A. Morse. Coordination of
groups of mobile autonomous agents using nearest
neighbor rules. Automatic Control, IEEE Transactions
on, 48(6):988 – 1001, june 2003.

[13] H. Mendes and M. Herlihy. Multidimensional
approximate agreement in Byzantine asynchronous
systems. In STOC ’13, 2013.

[14] M. A. Perles and M. Sigorn. A generalization of
Tverberg’s theorem. CoRR, abs/0710.4668, 2007.

[15] L. Tseng and N. H. Vaidya. Byzantine convex
consensus: An optimal algorithm. CoRR,
abs/1307.1332, 2013.

[16] L. Tseng and N. H. Vaidya. Asynchronous convex
consensus in the presence of crash faults. CoRR,
abs/1403.3455, 2014.

[17] L. Tseng and N. H. Vaidya. Iterative approximate
Byzantine consensus under a generalized fault model.
In In International Conference on Distributed
Computing and Networking (ICDCN), January 2013.

[18] N. H. Vaidya. Matrix representation of iterative
approximate Byzantine consensus in directed graphs.
CoRR, Mar. 2012.

[19] N. H. Vaidya. Iterative Byzantine vector consensus in
incomplete graphs. In In International Conference on

Distributed Computing and Networking (ICDCN),
January 2014.

[20] N. H. Vaidya and V. K. Garg. Byzantine vector
consensus in complete graphs. In Proceedings of the
2013 ACM Symposium on Principles of Distributed
Computing, PODC ’13, pages 65–73, New York, NY,
USA, 2013. ACM.

[21] J. Wolfowitz. Products of indecomposable, aperiodic,
stochastic matrices. In Proceedings of the American
Mathematical Society, volume 14, pages 733–737, 1963.

APPENDIX
A. NOTATIONS
This appendix summarizes some of the notations and ter-

minology introduced throughout the paper.

• d = dimension of the input vector at each process.

• n = number of processes. We assume that n ≥ (d +
2)f + 1.

• f = maximum number of faulty processes.

• V = {1, 2, · · · , n} is the set of all processes.

• dE(p, q) = Euclidean distance between points p and q.

• dH(h1, h2) = the Hausdorff distance between convex
polytopes h1, h2.

• H(C) = the convex hull of a multiset C.

• L([h1, h2, · · · , hk]; [c1, c2, · · · , ck]), defined in Section 3,
is a linear combination of convex polytopes h1, h2, ..., hk

with weights c1, c2, · · · , ck, respectively.

• |X| = the size of a multiset or set X.

• ∥a∥ = the absolute value of a real number a.

• F denotes the actual set of faulty processes in an exe-
cution of the algorithm.

• F [t] (t ≥ 0), defined in Section 4, denotes the set
of (faulty) processes that do not send any messages in
round t. Thus, each process in F [t] must have crashed
before sending any message in round t (it may have
possibly crashed in an earlier round). Note that F [r] ⊆
F [r + 1] ⊆ F for r ≥ 1.

• We use boldface upper case letters to denote matrices,
rows of matrices, and their elements. For instance, A
denotes a matrix, Ai denotes the i-th row of matrix A,
and Aij denotes the element at the intersection of the
i-th row and the j-th column of matrix A.

B. PROOF OF LEMMA 2
The proof of Lemma 2 uses the following theorem by Tver-

berg [14]:

Theorem 5. (Tverberg’s Theorem [14]) For any integer
f ≥ 0, for every multiset T containing at least (d + 1)f +
1 points in a d-dimensional space, there exists a partition
T1, .., Tf+1 of T into f + 1 non-empty multisets such that

∩f+1
l=1 H(Tl) ̸= ∅.

Now, we prove Lemma 2.

Proof. Consider any i ∈ V −F [1]. Consider the compu-
tation of polytope hi[0] on line 5 of the algorithm as

hi[0] := ∩C⊆Xi, |C|=|Xi|−f H(C), (22)

where Xi := {x | (x, k, 0) ∈ Ri} (lines 4-5). Convexity of
hi[0] follows directly from (22), because hi[0] is an intersec-
tion of convex hulls.

Recall that, due to the lower bound on n discussed in
Section 1, we assume that n ≥ (d + 2)f + 1. Thus, |Xi| ≥
n − f ≥ (d + 1)f + 1. By Theorem 5 above, there exists
a partition T1, T2, · · · , Tf+1 of Xi into multisets (Tj ’s) such

that ∩f+1
j=1H(Tj) ̸= ∅. Let us define

J = ∩f+1
j=1H(Tj) (23)

Thus, by Tverberg’s theorem above, J is non-empty. Now,
each multiset C used in (22) to compute hi[0] excludes only
f elements of Xi, whereas there are f + 1 multisets in the
partition T1, T2, · · · , Tf+1 of multiset Xi. Therefore, each
multiset C will fully contain at least one multiset from the
partition. It follows that H(C) will contain J defined above.
Since this property holds true for each multiset C used to
compute hi[0], J is contained in the convex polytope hi[0]
computed as per (22). Since J is non-empty, hi[0] is non-
empty.

C. PROOF OF THEOREM 1
Proof. The proof of the above theorem is by induction

on τ . Recall that we defined vi[0] to be equal to hi[0] for
all i ∈ V − F [1] in the initialization step (I1) in Section 5.
Thus, the theorem trivially holds for τ = 0.

Now, for some τ ≥ 0, and for all i ∈ V −F [τ +1], suppose
that vi[τ] = hi[τ]. Recall that processes in V − F [τ + 2]
surely survive at least till the end of round τ + 1 (by def-
inition of F [τ + 2]). Therefore, in round τ + 1 ≥ 1, each
process in i ∈ V − F [τ + 2] computes its new state hi[τ +
1] at line 14 of Algorithm CC, using function L(Yi[τ +
1] ; [1

|Yi[τ+1]| , · · · ,
1

|Yi[τ+1]|]), where Yi[τ+1] := {h | (h, j, τ+
1) ∈ MSGi[τ+1]}. Also, if (h, j, τ+1) ∈ MSGi[τ+1], then pro-
cess j must have sent round τ + 1 message (hj [τ], j, τ + 1)
to process i – in other words, h above (in (h, j, τ + 1) ∈
MSGi[τ +1]) must be equal to hj [τ]. Also, since j did send a
round τ + 1 message, j ∈ V −F [τ + 1]. Thus, by induction
hypothesis, vj [τ] = hj [τ].

Now observe that, by definition of Yi[τ+1] at line 13 of the
algorithm, |Yi[τ +1]| = |MSGi[τ +1]|. Thus, the definition of
the matrix elements in (8) and (9) ensures that Mi[τ+1]v[τ]
equals L(Yi[τ + 1] ; [1

|Yi[τ+1]| , · · · ,
1

|Yi[τ+1]|]), i.e., hi[τ + 1].

Thus, vi[τ + 1] defined as Mi[τ + 1]v[τ] also equals hi[τ +
1]. This holds for all i ∈ V − F [τ + 2], completing the
induction.

D. PROOF OF LEMMA 6
We first present a claim that will be used in the proof of

Lemma 6.

Claim 1. For t ≥ 1, let P[t] = Πt
τ=1M[τ]. Then, for all

processes j ∈ V −F [t+ 1], and k ∈ F [1], Pjk[t] = 0.

Proof. The claim is intuitively straightforward. For com-
pleteness, we present a formal proof here. The proof is by
induction on t.

Induction Basis: Consider the case when t = 1, j ∈ V −
F [2], and k ∈ F [1]. Then by definition of F [1], (∗, k, 0) ̸∈
MSGj [1]. Then, due to (9), Mjk[1] = 0, and hence Pjk[1] =
Mjk[1] = 0.
Induction: Consider t ≥ 2. Assume that the claim holds

true through round t − 1. Then, Pjk[t − 1] = 0 for all
j ∈ V −F [t] and k ∈ F [1]. Recall that P[t−1] = Πt−1

τ=1M[τ].
Now, we will prove that the claim holds true for round

t. Consider j ∈ V − F [t + 1] and k ∈ F [1]. Note that
P[t] = Πt

τ=1M[τ] = M[t]Πt−1
τ=1M[τ] = M[t]P[t − 1]. Thus,

Pjk[t] can be non-zero only if there exists a q ∈ V such that
Mjq[t] and Pqk[t− 1] are both non-zero.
For any q ∈ F [t − 1], (∗, q, t − 1) ̸∈ MSGj [t]. Then, due to

(9), Mjq[t] = 0 for all q ∈ F [t − 1], and hence all q ∈ F [1]
(note that F [r − 1] ⊆ F [r] for r ≥ 2). Additionally, by the
induction hypothesis, for all q ∈ V − F [t] and k ∈ F [1],
Pqk[t− 1] = 0. Thus, these two observations together imply
that there does not exist any q ∈ V such that Mjq[t] and
Pqk[t− 1] are both non-zero. Hence, Pjk[t] = 0.

Now, we are ready to prove Lemma 6 in Section 6.

Proof. Recall that Z and IZ are defined in (20) and
(21), respectively. We first prove that for all j ∈ V − F [1],
IZ ⊆ hj [0]. We make the following observations for each
process i ∈ V −F [1]:

• Observation 1: By the definition of multiset Xi at line
4 of round 0 at process i, and the definition of XZ in
Section 6, we have XZ ⊆ Xi.

• Observation 2: Let A and B be sets of points in the
d-dimensional space, where |A| ≥ n − f , |B| ≥ n − f
and A ⊆ B. Define hA := ∩CA⊆A,|CA|=|A|−f H(CA)
and hB := ∩CB⊆B,|CB |=|B|−f H(CB). Then hA ⊆ hB .
This observation follows directly from the fact that ev-
ery multiset CA in the computation of hA is contained
in some multiset CB used in the computation of hB ,
and the property of function H.

Now, consider the computation of hi[0] at line 5. By
Observations 1 and 2, and the definitions of hi[0] and IZ ,
we have that IZ ⊆ hi[0] = vi[0], where i ∈ V − F [1].
Also, by initialization step (I2) (in Section 5), for k ∈ F [1],
vk[0] = hm[0], for some fault-free process m. Thus, all the
elements of v[0] contain IZ . Then, due to row stochas-
ticity of Πt

τ=1M[τ], it follows that each element of v[t] =(
Πt

τ=1M[τ
)
v[0] also contain IZ . Recalling that hi[t] = vi[t]

for each fault-free process, proves the lemma.

E. PROOF OF THEOREM 3
Proof. Consider multiset XZ defined in Section 6. Re-

call that |XZ | = |Z|, and that Z contains at least n − f
tuples. Thus, XZ contains at least n − f points, and of
these, at least n − 2f points must be the inputs at fault-
free processes. Let VZ denote the set of fault-free processes
whose inputs appear in XZ .
Now consider the following execution of any algorithm

ALGO that correctly solves approximate convex hull con-
sensus. Suppose that the faulty processes in F do not crash,
and have incorrect inputs. Consider the case when processes
in V −XZ are so slow that the other fault-free processes must
terminate before receiving any messages from the processes

in V −XZ . This is possible, since we assume that faulty pro-
cesses do not crash, and |V −XZ | ≤ f (due to |XZ | ≥ n−f).
The fault-free processes in VZ cannot determine whether the
processes in V −XZ are just slow, or they have crashed.

Processes in VZ must be able to terminate without receiv-
ing any messages from the processes in V −XZ . Thus, their
output must be in the convex hull of inputs at the fault-free
processes whose inputs are included in XZ . However, any
f of the processes whose inputs are in XZ may potentially
be faulty and have incorrect inputs. Therefore, the output
obtained by ALGO must be contained in IZ as defined in
Section 6. On the other hand, by Lemma 6, the output
obtained using Algorithm CC contains IZ . This proves the
theorem.

F. PROOF OF THEOREM 4
Proof. We will prove the result for d = 1. It should be

obvious that impossibility with d = 1 implies impossibility
for larger d (since we can always choose inputs that have 0
coordinates in all dimensions except one).

The proof is by contradiction. Suppose that there exists
an algorithm, say Algorithm A, that achieves the above four
properties for n ≥ 4f + 1 and d = 1.

Let the cost function be given by c(x) = 4− (2x− 1)2 for
x ∈ [0, 1] and c(x) = 3 for x ̸∈ [0, 1]. For future reference,
note that within the interval [0, 1], function c(x) has the
smallest value at x = 0, 1 both.

Now, suppose that all the inputs (correct and incorrect)
are restricted to be binary, and must be 0 or 1. We will
prove impossibility under this restriction on the inputs at
faulty and fault-free processes both, which suffices to prove
that the four properties cannot always be satisfied. Suppose
that the output of Algorithm A at fault-free process i is
yi. Due to the validity property, and because the inputs are
restricted to be 0 or 1, we know that yi ∈ [0, 1].

Since ⌈n
2
⌉ ≥ ⌈ 4f+1

2
⌉ = 2f+1, at least 2f+1 processes will

have either input 0, or input 1. Without loss of generality,
suppose that at least 2f + 1 processes have input 0.

Consider a fault-free process i. By weak β-Optimality,
c(yi) ≤ c(0), that is, c(yi) ≤ 3. However, the minimum
value of the cost function is 3 over all possible inputs. Thus,
c(yi) = 3. Similarly, for any other fault-free process j as
well, c(yj) must equal 3. Now, due to validity, yj ∈ [0, 1],
and the cost function is 3 in interval [0, 1] only at x = 0, 1.
Therefore, we must have yi equal to 0 or 1, and yj also
equal to 0 or 1. However, because algorithm A satisfies the
ϵ-agreement condition, dE(yi, yj) = ∥yi − yj∥ < ϵ (recall
that dimension d = 1). If ϵ < 1, then yi and yj must be
identical (because we already know that they are either 0
or 1). Since this condition holds for any pair of fault-free
processes, it implies exact consensus. Also, yi and yj will be
equal to the input at a fault-free process due to the validity
property above, and because the inputs are restricted to be
0 or 1. In other words, Algorithm A can be used to solve
exact consensus in the presence of crash faults with incorrect
inputs when n ≥ 4f + 1 in an asynchronous system. This
contradicts the well-known impossibility result by Fischer,
Lynch, and Paterson [8].

