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Abstract

This paper defines a new consensus problem, convex consensus. Similar to vector
consensus [13, 20, 19], the input at each process is a d-dimensional vector of reals
(or, equivalently, a point in the d-dimensional Euclidean space). However, for convex
consensus, the output at each process is a convex polytope contained within the convex
hull of the inputs at the fault-free processes. We explore the convex consensus problem
under crash faults with incorrect inputs, and present an asynchronous approximate
convex consensus algorithm with optimal fault tolerance that reaches consensus on
an optimal output polytope. Convex consensus can be used to solve other related
problems. For instance, a solution for convex consensus trivially yields a solution for
vector consensus. More importantly, convex consensus can potentially be used to solve
other more interesting problems, such as convex function optimization [5, 4].
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1 Introduction

The distributed consensus problem has received significant attention over the past three decades
[3]. The traditional consensus problem formulation assumes that each process has a scalar input.
As a generalization of this problem, recent work [13, 20, 19] has addressed vector consensus (also
called multidimensional consensus) in the presence of Byzantine faults, wherein each process has a
d-dimensional vector of reals as input, and the processes reach consensus on a d-dimensional vector
within the convex hull of the inputs at fault-free processes (d ≥ 1). In the discussion below, it will
be more convenient to view a d-dimensional vector as a point in the d-dimensional Euclidean space.

This paper defines the problem of convex consensus. Similar to vector consensus, the input at
each process is a point in the d-dimensional Euclidean space. However, for convex consensus, the
output at each process is a convex polytope contained within the convex hull of the inputs at the
fault-free processes. Intuitively, the goal is to reach consensus on the “largest possible” polytope
within the convex hull of the inputs at fault-free processes, allowing the processes to estimate the
domain of inputs at the fault-free processes. In some cases, the output convex polytope may consist
of just a single point, but in general, it may contain an infinite number of points.

Convex consensus may be used to solve other related problems. For instance, a solution for
convex consensus trivially yields a solution for vector consensus [13, 20]. More importantly, convex
consensus can potentially be used to solve other more interesting problems, such as convex function
optimization [5, 4, 15] with the convex hull of the inputs at fault-free processes as the domain. We
will discuss the application of convex consensus to function optimization in Section 4.

Fault model: With the exception of Section 3.3, rest of the paper assumes the crash faults with
incorrect inputs [6, 3] fault model. In this model, each faulty process may crash, and may also
have an incorrect input. A faulty process performs the algorithm faithfully, using possibly incorrect
input, until it (possibly) crashes. The implication of an incorrect input will be clearer when we
formally define convex consensus below. At most f processes may be faulty. All fault-free processes
have correct inputs. Since this model allows incorrect inputs at faulty processes, the simulation
techniques in [6, 3] can be used to transform an algorithm designed for this fault model to an
algorithm for tolerating Byzantine faults. For brevity, we do not discuss this transformation. (A
Byzantine convex consnesus algorithm is also presented in our technical report [17].) Section 3.3
briefly discusses how our results extend naturally to the more commonly used crash fault model
wherein faulty processes have correct inputs (we will refer to the latter model as crash faults with
correct inputs).1

System model: The system under consideration is asynchronous, and consists of n processes. Let
the set of processes be denoted as V = {1, 2, · · · , n}. All processes can communicate with each other.
Thus, the underlying communication network is modeled as a complete graph. Communication
channels are reliable and FIFO [7, 6]. Each message is delivered exactly once on each channel. The
input at process i, denoted as xi, is a point in the d-dimensional Euclidean space (equivalently, a
d-dimensional vector of real numbers).

1Our results also easily extend to the case when up to f processes may crash, and up to ψ processes may have
incorrect inputs, with the set of crashed processes not necessarily being identical to the processes with incorrect
inputs. For brevity, we omit this generalization.
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Convex consensus: The FLP impossibility of reaching exact consensus in asynchronous systems
with crash faults [9] extends to the problem of convex consensus as well. Therefore, we consider
approximate convex consensus in our work. An approximate convex consensus algorithm must
satisfy the following properties:

• Validity: The output (or decision) at each fault-free process must be a convex polytope in
the convex hull of correct inputs. Under the crash fault with incorrect inputs model, the input
at any faulty process may possibly be incorrect.

• ε-Agreement: For a given constant ε > 0, the Hausdorff distance (defined below) between
the output polytopes at any two fault-free processes must be at most ε.

• Termination: Each fault-free process must terminate within a finite amount of time.

Distance metrics:

• dE(p, q) denotes the Euclidean distance between points p and q. All points and polytopes in
our discussion belong to a d-dimensional Euclidean space, for some d ≥ 1, even if this is not
always stated explicitly.

• For two convex polytopes h1, h2, the Hausdorff distance dH(h1, h2) is defined as follows [11].

dH(h1, h2) = max { max
p1∈h1

min
p2∈h2

dE(p1, p2), max
p2∈h2

min
p1∈h1

dE(p1, p2) } (1)

Optimality of approximate convex consensus: The algorithm proposed in this paper is
optimal in two ways. It requires an optimal number of processes to tolerate f faults, and it decides
on a convex polytope that is optimal in a “worst-case sense”, as elaborated below:

• Prior work on approximate vector consensus mentioned earlier [13, 20] showed that n ≥
(d + 2)f + 1 is necessary to solve that problem in an asynchronous system consisting of n
processes with at most f Byzantine faults. Although these prior papers dealt with Byzantine
faults, it turns out that their proof of lower bound on n (i.e., lower bound of (d+ 2)f + 1) is
also directly applicable to approximate vector consensus under the crash fault with incorrect
inputs model used in our present work. Thus, n ≥ (d + 2)f + 1 is a necessary condition
for vector consensus under this fault model. Secondly, it is easy to show that an algorithm
for approximate convex consensus can be transformed into an algorithm for approximate
vector consensus. Therefore, n ≥ (d+2)f +1 is a necessary condition for approximate convex
consensus as well. For brevity, we omit a formal proof of the lower bound, and our subsequent
discussion under the crash faults with incorrect inputs model assumes that

n ≥ (d+ 2)f + 1 (2)

Our algorithm is correct under this condition, and thus achieves optimal fault resilience. For
crash faults with correct inputs, a smaller n suffices, as discussed later in Section 3.3.

• In this paper, we only consider deterministic algorithms. A convex consensus algorithm A is
said to be optimal if the following condition is true:
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Let F denote a set of up to f faulty processes. For a given execution of algorithm A
with F being the set of faulty processes, let yi(A) denote the output polytope at process
i at the end of the given execution. For any other convex consensus algorithm B, there
exists an execution with F being the set of faulty processes, such that yi(B) is the
output at fault-free process i, and yj(B) ⊆ yj(A) for each fault-free process j.

The goal here is to decide on an output polytope that includes as much of the convex hull
of all correct inputs as possible. However, since any process may be potentially faulty (with
incorrect input), the output polytope can be smaller than the convex hull of all correct inputs.
Intuitively speaking, the optimality condition says that an optimal algorithm should decide
on a convex region that is no smaller than that decided in a worst-case execution of algorithm
B. In Section 3.2, we will show that our proposed algorithm is optimal in the above sense.

Summary of main contributions of the paper:

• The paper introduces the problem of convex consensus. We believe that feasibility of convex
consensus can be used to infer feasibility of solving other interesting problems as well.

• We present an approximate convex consensus algorithm in asynchronous systems, and show
that it achieves optimality in terms of its resilience, and also in terms of the convex polytope
that it decides on.

• We show that the convex consensus algorithm can be used to solve a version of the convex
function optimization problem. We also prove an impossibility result pertaining to convex
function optimization with crash faults in asynchronous systems.

Related Work: For brevity, we only discuss the most relevant prior work here. Many researchers
in the decentralized control area, including Bertsekas and Tsitsiklis [4] and Jadbabaei, Lin and Moss
[12], have explored approximate consensus in the absence of process faults, using only near-neighbor
communication in systems wherein the communication graph may be partially connected and time-
varying. The structure of the proof of correctness of the algorithm presented in this paper, and our
use of well-known matrix analysis results [21], is inspired by the above prior work. We have also
used similar proof structures in our prior work on other (Byzantine) consensus algorithms [18, 20].
With regards to the proof technique, this paper’s contribution is to show how the above proof
structure can be extended to the case when the process state consists of convex polytopes.

Dolev et al. addressed approximate Byzantine consensus in both synchronous and asynchronous
systems [7] (with scalar input). Subsequently, Coan proposed a simulation technique to transform
consensus algorithms that are resilient to crash faults into algorithms tolerating Byzantine faults
[6, 3]. Independently, Abraham, Amit and Dolev proposed an algorithm for approximate Byzantine
consensus [1]. As noted earlier, the recent work of Mendes and Herlihy [13] and Vaidya and Garg
[20] has addressed approximate vector consensus in the presence of Byzantine faults. This work
has yielded lower bounds on the number of processes, and algorithms with optimal resilience for
asynchronous [13, 20] as well as synchronous systems [20] modeled as complete graphs. Subsequent
work [19] has explored the vector consensus problem in incomplete graphs.

Mendes, Tasson and Herlihy [14] study the problem of Barycentric agreement. Barycentric
agreement has some similarity to convex consensus, in that the output of Barycentric agreement is
not limited to a single value (or a single point). However, the correctness conditions for Barycentric
agreement are different from those of our convex consensus problem.
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2 Preliminaries

Some notations introduced in the paper are summarized in Appendix A. In this section, we introduce
functions H, L, and a communication primitive used in our algorithm.

Definition 1 For a multiset of points X, H(X) is the convex hull of the points in X.

A multiset may contain the same element more than once.

Definition 2 Function L: Suppose that ν non-empty convex polytopes h1, h2, · · · , hν , and ν weights
c1, c2, · · · , cν are given such that 0 ≤ ci ≤ 1 and

∑ν
i=1 ci = 1, Linear combination of these convex

polytopes, L([h1, h2, · · · , hν ] ; [c1, c2, · · · , cν ]), is defined as follows:

• p ∈ L([h1, h2, · · · , hν ]; [ c1, c2, · · · , cν ]) if and only if

for 1 ≤ i ≤ ν, there exists pi ∈ hi, such that p =
∑

1≤i≤ν
cipi (3)

Because hi’s above are all convex and non-empty, L([h1, h2, · · · , hν ] ; [c1, c2, · · · , cν ]) is also a convex
non-empty polytope. (The proof is straightforward.) The parameters for L consist of two vectors,
with the elements of the first vector being polytopes, and the elements of the second vector being
the corresponding weights in the linear combination. With a slight abuse of notation, we will also
specify the vector of polytopes as a multiset – in such cases, we will always assign an identical
weight to all the polytopes in the multiset, and hence their ordering is not important.

Stable vector communication primitive: As seen later, our algorithm proceeds in asyn-
chronous rounds. In round 0 of the algorithm, the processes use a communication primitive called
stable vector [2, 14], to try to learn each other’s inputs. Stable vector was originally developed in
the context of Byzantine faults [2, 14]. To achieve its desirable properties (listed below), stable
vector requires at least 3f + 1 processes, with at most f being Byzantine faulty. Since the crash
fault with incorrect inputs model is weaker than the Byzantine fault model, the properties of stable
vector listed below will hold in our context, provided that n ≥ 3f + 1. As noted earlier in Section
1, n ≥ (d + 2)f + 1 is a necessary condition for approximate convex consensus in the presence of
crash faults with incorrect inputs. Then, with d ≥ 1, we have n ≥ 3f + 1, and the properties of
stable vector below will hold.

In round 0 of our algorithm, each process i first broadcasts a message consisting of the tuple
(xi, i, 0), where xi is process i’s input. In this tuple, 0 indicates the (asynchronous) round index.
Process i then waits for the stable vector primitive to return a set Ri containing round 0 messages.
We will rely on the following properties of the stable vector primitive, which are implied by results
proved in prior work [2, 14].

• Liveness: At each process i that does not crash before the end of round 0, stable vector
returns a set Ri containing at least n− f distinct tuples of the form (x, k, 0).

• Containment: For processes i, j that do not crash before the end of round 0, let Ri, Rj be
the set of messages returned to processes i, j by stable vector in round 0, respectively. Then,
either Ri ⊆ Rj or Rj ⊆ Ri. (Also, by the previous property, |Ri| ≥ n− f and |Rj | ≥ n− f .)

A description of the implementation of the stable vector primitive is omitted for lack of space.
Please refer to [2, 14] for more details.
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3 Proposed Algorithm and its Correctness

The proposed algorithm, named Algorithm CC, proceeds in asynchronous rounds. The input at
each process i is named xi. The initial round of the algorithm is called round 0. Subsequent rounds
are named round 1, 2, 3, etc. In each round t ≥ 0, each process i computes a state variable hi,
which represents a convex polytope in the d-dimensional Euclidean space. We will refer to the value
of hi at the end of the t-th round performed by process i as hi[t], t ≥ 0. Thus, for t ≥ 1, hi[t− 1]
is the value of hi at the start of the t-th round at process i. The algorithm terminates after tend
rounds, where tend is a constant defined later in equation (13). The state hi[tend] of each fault-free
process i at the end of tend rounds is its output (or decision) for the consensus algorithm.

Xi and Yi[t] defined on lines 4 and 13 of the algorithm are both multisets. A given value may
occur multiple times in a multiset. Also, the intersection in line 5 is over the convex hulls of the
subsets of multiset Xi of size |Xi|−f (note that each of these subsets is also a multiset). Elements of
Xi are points in the d-dimensional Euclidean space, whereas elements of Yi[t] are convex polytopes.
In line 14, Yi[t] specifies the multiset of polytopes whose linear combination is obtained using L;
all the weights specified as parameters to L here are equal to 1

|Yi[t]| .

Algorithm CC: Steps performed at process i shown below.

Initialization: All sets used below are initialized to ∅.

Round 0 at process i:

• On entering round 0: 1

Send message (xi, i, 0) to all the processes 2

• When stable vector returns a set Ri: 3

Multiset Xi := {x | (x, k, 0) ∈ Ri} // Note: |Xi| = |Ri| 4

hi[0] := ∩C⊆Xi, |C|=|Xi|−f H(C) 5

Proceed to Round 1 6

Round t ≥ 1 at process i:

• On entering round t ≥ 1: 7

MSGi[t] := MSGi[t] ∪ (hi[t− 1], i, t) 8

Send message (hi[t− 1], i, t) to all the processes 9

• When message (h, j, t) is received from process j 6= i 10

MSGi[t] := MSGi[t] ∪ {(h, j, t)} 11

• When |MSGi[t]| ≥ n− f for the first time: 12

Multiset Yi[t] := {h | (h, j, t) ∈ MSGi[t]} // Note: |Yi[t]| = |MSGi[t]| 13

hi[t] := L( Yi[t] ; [ 1
|Yi[t]| , · · · ,

1
|Yi[t]| ]) 14

If t < tend, then proceed to Round t+ 1 15
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3.1 Proof of Correctness

The use of matrix representation in our correctness proof below is inspired by the prior work on
non-fault-tolerant consensus (e.g., [12, 4]). We have also used such a proof structure in our work
on Byzantine consensus [18, 20]. We now introduce more notations (some of the notations are
summarized in Appendix A):

• For a given execution of the proposed algorithm, let F denote the actual set of faulty processes
in that execution. Processes in F may have incorrect inputs, and they may potentially crash.

• For round r ≥ 0, let F [r] denote the set of faulty processes that have crashed before sending
any round r messages. Note that F [r] ⊆ F [r + 1] ⊆ F .

Proofs of Lemmas 1 and 2 below are presented in Appendices B, and C, respectively.

Lemma 1 Algorithm CC ensures progress: (i) all the fault-free processes will eventually progress
to round 1; and, (ii) if all the fault-free processes progress to the start of round t, t ≥ 1, then all
the fault-free processes will eventually progress to the start of round t+ 1.

Lemma 2 For each process i ∈ V −F [1], the polytope hi[0] is non-empty and convex.

We now introduce some matrix notation and terminology to be used in our proof. Boldface
upper case letters are used below to denote matrices, rows of matrices, and their elements. For
instance, A denotes a matrix, Ai denotes the i-th row of matrix A, and Aij denotes the element at
the intersection of the i-th row and the j-th column of matrix A. A vector is said to be stochastic
if all its elements are non-negative, and the elements add up to 1. A matrix is said to be row
stochastic if each row of the matrix is a stochastic vector [12]. For matrix products, we adopt the
“backward” product convention below, where a ≤ b,

Πb
τ=aA[τ ] = A[b]A[b− 1] · · ·A[a] (4)

Let v be a column vector of size n whose elements are convex polytopes. The i-th element of v is
vi. Let A be a n × n row stochastic square matrix. We define the product of Ai (the i-th row of
A) and v as follows using function L defined in Section 2.

Aiv = L(vT ; Ai) (5)

where T denotes the transpose operation. The above product is a polytope in the d-dimensional
Euclidean space. Product of matrix A and v is then defined as follows:

Av = [ A1v A2v · · · Anv ]T (6)

Due to the transpose operation above, the product Av is a column vector consisting of n polytopes.

Now, we describe how to represent Algorithm CC using a matrix form. Let v[t], t ≥ 0, denote
a column vector of length n. In the remaining discussion, we will refer to v[t] as the state of the
system at the end of round t. In particular, vi[t] for i ∈ V is viewed as the state of process i at the
end of round t. We define v[0] as follows as initialization of the state vector:

(I1) For each process i ∈ V −F [1], vi[0] := hi[0].
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(I2) Pick any one fault-free process m ∈ V − F ⊆ V − F [1]. For each process k ∈ F [1], vk[0] is
arbitrarily defined to be equal to hm[0]. Such an arbitrary choice suffices because the state
vk[0] for k ∈ F [1] does not impact future state of any other process (by definition, processes
in F [1] do not send any messages in round 1 and beyond).

We will show that the state evolution can be expressed using matrix form as in (7) below, where
M[t] is an n×n matrix with certain desirable properties. The state vk[t] of process k ∈ F [t] is not
meaningful, since process k has crashed. However, (7) assigns it a value for convenience of analysis.
M[t] is said to be the transition matrix for round t.

v[t] = M[t] v[t− 1], t ≥ 1 (7)

In particular, given an execution of the algorithm, we construct the transition matrix M[t] for
round t ≥ 1 of that execution using the two rules below (Rule 1 and Rule 2). Elements of row
Mi[t] will determine the state vi[t] of process i (specifically, vi[t] = Mi[t]v[t− 1]). Note that Rule
1 applies to processes in V − F [t + 1]. Each process i ∈ V − F [t + 1] survives at least until the
start of round t+ 1, and sends at least one message in round t+ 1. Therefore, its state vi[t] at the
end of round t is of consequence. On the other hand, processes in F [t + 1] crash sometime before
sending any messages in round t + 1 (possibly crashing in previous rounds). Thus, their states at
the end of round t are not relevant to the fault-free processes anymore, and hence Rule 2 defines
the entries of the corresponding rows of M[t] somewhat arbitrarily.

In the matrix specification below, MSGi[t] is the message set at the point where Yi[t] is defined
on line 13 of the algorithm. Thus, Yi[t] := {h | (h, j, t) ∈ MSGi[t]}, and |MSGi[t]| = |Yi[t]|.

• Rule 1: For each process i ∈ V −F [t+ 1], and each k ∈ V :

If a round t message from process k (of the form (∗, k, t)) is in MSGi[t], then

Mik[t] :=
1

|MSGi[t]|
(8)

Otherwise,
Mik[t] := 0 (9)

• Rule 2: For each process j ∈ F [t+ 1], and each k ∈ V ,

Mjk[t] :=
1

n
(10)

Theorem 1 For t ≥ 1, define v[t] = M[t]v[t − 1], with M[t] as specified above. Then, for τ ≥ 0,
and for all i ∈ V −F [τ + 1], vi[τ ] equals hi[τ ].

The proof is presented in Appendix D. The above theorem states that, for t ≥ 1, equation (7),
that is, v[t] = M[t]v[t− 1], correctly characterizes the state of the processes that have not crashed
before the end of round t. For processes that have crashed, their states are not relevant, and could
be assigned any arbitrary value for analytical purposes (this is what Rule 2 above effectively does).
Given the matrix product definition in (6), and by repeated application of the state evolution
equation (7), we obtain

v[t] =
(

Πt
τ=1M[τ ]

)
v[0], t ≥ 1 (11)

Recall that we adopt the “backward” matrix product convention presented in (4).
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Definition 3 A polytope is valid if it is contained in the convex hull of the inputs of fault-free
processes.

Theorem 2 Algorithm CC satisfies the validity, ε-agreement and termination properties.

Proof Sketch: Appendix F presents the complete proof. Repeated application of Lemma 1 ensures
that the fault-free processes will progress to the end of round t, for t ≥ 1. By repeated application
of Theorem 1, hi[t] equals the i-th element of (Πt

τ=1M[τ ])v[0], for i ∈ V −F [t+ 1].

Validity: By design, M[τ ] is a row stochastic matrix for each τ , therefore, Πt
τ=1M[τ ] is also row

stochastic. As shown in Lemma 6 in Appendix E, vi[0] = hi[0] is valid for each fault-free process
i ∈ V −F [1]. Also, for each k ∈ F [1], in initialization step (I2), we defined vk[0] = hm[0], where m
is a fault-free process. Hence, vk[0] is valid for process k ∈ F [1]. Therefore, all the elements of v[0]
are valid. This observation, in conjunction with the previous observation that Πt

τ=1M[τ ] is row
stochastic, and the product definition in (6), implies that each element of v[t] = (Πτ

τ=1M[τ ])v[0] is
also valid. Then, Theorem 1 implies that the state of each fault-free process is always valid, and
hence its output (i.e., its state after tend rounds) meets the validity condition.

ε-Agreement and Termination: To simplify the termination of the algorithm, we assume that the
input at each process belongs to a bounded space; in particular, each coordinate of xi is lower
bounded by µ and upper bounded by U , where µ and U are known constants. Let P[t] = Πt

τ=1 M[τ ].
Then, as shown in Lemma 5 (Appendix E), for i, j ∈ V − F and k ∈ V ,

‖Pik[t]−Pjk[t] ‖ ≤
(

1− 1

n

)t
(12)

where ‖x‖ denotes absolute value of a real number x. Recall from previous discussion that, due to
Theorem 1, for each fault-free process i, hi[t] equals the i-th element of P[t]v[0]. This in conjunction
with (12) can be used to prove that for i, j ∈ V −F , the Hausdorff distance between hi[t] and hj [t]
is bounded. In particular, for i, j ∈ V − F ,

dH(hi[t], hj [t]) <

(
1− 1

n

)t √
dn2 max(U2, µ2)

By defining tend to be the smallest integer satisfying the inequality below, ε-agreement and termi-
nation conditions both follow. (

1− 1

n

)t √
dn2 max(U2, µ2) < ε (13)

�

3.2 Optimality of Algorithm CC

Due to the Containment property of stable vector mentioned in Section 2, the set Z defined below
contains at least n− f messages. Recall that set Ri is defined on line 3 of Algorithm CC.

Z := ∩i∈V−F Ri (14)

Define multiset XZ := {x | (x, k, 0) ∈ Z}. Then, define a convex polytope IZ as follows.

IZ := ∩D⊂XZ ,|D|=|XZ |−f H(D) (15)

Now we establish a “lower bound” on output at the fault-free processes.
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Lemma 3 For all i ∈ V −F [t+ 1] and t ≥ 0, IZ ⊆ hi[t].

Lemma 3 is proved in Appendix G. The following theorem is proved in Appendix H.

Theorem 3 Algorithm CC is optimal under the notion of optimality in Section 1.

Degenerate Cases: In some cases, the output polytope at fault-free processes may be a single
point, making the output equivalent to that obtained from vector consensus [13, 20]. As a trivial
example, this occurs when all the fault-free processes have identical input. It is possible to identify
scenarios when the number of processes is exactly equal to the lower bound, i.e., n = (d+ 2)f + 1
processes, when the output polytope consists of just a single point. However, in general, particularly
when n is larger than the lower bound, the output polytopes will contain infinite number of points.
In any event, as shown in Theorem 3, our algorithm achieves optimality in all cases. Thus, any
other algorithm can also produce such degenerate outputs for the same inputs.

3.3 Convex Consensus under Crash Faults with Correct Inputs

With some simple changes, our algorithm and results can be extended to achieve convex consensus
under the crash faults with correct inputs model. Under this model, we still need to satisfy the ε-
agreement and termination properties stated in Section 1. The validity property remains unchanged
as well, however, in this model, inputs at all processes are always correct. Thus, validity implies
that the ouput will be contained in the convex hull of the inputs at all the processes.

To obtain the algorithm for convex consensus under the crash faults with correct inputs model,
three key changes required. First, the lower bound on the number of processes becomes n ≥ 2f+1,
which is independent of the dimension d. Second, we need a version of the stable vector primitive
that satisfies the properties stated previously with just 2f + 1 processes (this is feasible). Finally,
instead of the computation in line 5 of Algorithm CC, the computation of hi[0] needs to be modified
as hi[0] := H(Xi), where Xi := {x | (x, k, 0) ∈ Ri}. With these changes, the modified algorithm
achieves convex consensus under the crash faults with correct input model, with the rest of the
proof being similar to the proof for the crash faults with incorrect inputs model. The modified
algorithm exhibits optimal resilence as well.

4 Convex Function Optimization

A motivation behind our work on convex consensus was to develop an algorithm that may be used
to solve a broader range of problems. For instance, vector consensus can be achieved by first solving
convex consensus, and then using the centroid of the output polytope of convex consensus as the
output of vector consensus. Similarly, convex consensus can be used to solve a convex function
optimization problem [5, 4, 15] under the crash faults with incorrect inputs model. We present an
algorithm for this, and then discuss some of its properties, followed by an impossibility result of
more general interest. The desired outcome of the function optimization problem is to minimize
a cost function, say function c, over a domain consisting of the convex hull of the correct inputs.
The proposed algorithm has two simple steps:

• Step 1: First solve convex consensus with parameter ε. Let hi be the output polytope of
convex consensus at process i.
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• Step 2: The output of function optimization is the tuple (yi, c(yi)), where yi = arg minx∈hi c(x).

We assume the following property for some constant B: for any inputs x, y, ‖c(x) − c(y)‖ ≤
B dE(x, y) (B-Lipschitz continuity). Then, it follows that, for fault-free processes i, j, ‖c(yi) −
c(yj)‖ ≤ εB. Thus, the fault-free processes find approximately equal minimum value for the
function. However, c(yi) at process i may not be minimum over the entire convex hull of the
inputs of fault-free processes. For instance, even when all the processes are fault-free, each subset
of f processes is viewed as possibly faulty with incorrect inputs. The natural question then is “Is it
possible to find an algorithm that always find a smaller minimum value than the above algorithms?”
We can extend the notion of optimality from Section 1 to function optimization in a natural way,
and show that no other algorithm can obtain a lower minimum value (in the worst-case) than the
above algorithm. Appendix I elaborates on this.

The above discussion implies that for any β > 0, we can achieve ‖c(yi)−c(yj)‖ < β by choosing
ε = β/B for convex consensus in Step 1. However, we are not able to similarly show that dE(yi, yj)
is small. In particular, if there are multiple points on the boundary of hi that minimize the cost
function, then one of the points is chose arbitrarily as arg minx∈hi c(x), and consensus on the point
is not guaranteed. It turns out it is not feasible to simultaneously reach (approximate) consensus
on a point, and to also ensure that the cost function at that point is “small enough”. We briefly
present an impossibility result that makes a more precise statement of this infeasibility. It can be
shown (Appendix I) that the following four properties cannot be satisfied simultaneously in the
presence of up to f crash faults with incorrect inputs.2 The intuition behind part (ii) of the weak
optimality condition below is as follows. When 2f + 1 processes have an identical input, say x∗,
even if f of them are slow (or crash), each fault-free process must be able to learn that f + 1
processes have input x∗, and at least one of these f + 1 processes must be fault-free. Therefore, it
would know that the minimum value of the cost function over the convex hull of the correct inputs
is at most c(x∗). Note that our algorithm above achieves weak β-optimality but not ε-agreement.

• Validity: output yi at fault-free process i is a point in the convex hull of the correct inputs.

• ε-Agreement: for any constant ε > 0, for any fault-free processes i, j, dE(yi, yj) < ε.

• Weak β-Optimality: (i) for any constant β > 0, for any fault-free processes i, j, ‖c(yi) −
c(yj)‖ < β, and (ii) if at least 2f + 1 processes (faulty or fault-free) have an identical input,
say x, then for any fault-free process i, c(yi) ≤ c(x).

• Termination: each fault-free process must terminate within a finite amount of time.

The proof of impossibility for n ≥ 4f + 1 and d ≥ 1 is presented in Appendix I. We know that even
without the weak β-optimality, we need n ≥ (d+2)f +1. Thus, the impossibility result is complete
for d ≥ 2. Whether the impossibility extends to 3f + 1 ≤ n ≤ 4f and d = 1 is presently unknown.

5 Summary

We introduce the convex consensus problem under crash faults with incorrect inputs, and present
an asynchronous approximate convex consensus algorithm with optimal fault tolerance that reaches
consensus on an optimal output polytope. We briefly extend the results to the crash faults with
correct inputs model, and also use the convex consensus algorithm to solve convex function opti-
mization. An impossibility result for asynchronous function optimization is also presented.

2Similar impossibility result can be shown for the crash fault with correct inputs model too.
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A Notations

This appendix summarizes some of the notations and terminology introduced throughout the paper.

• d = dimension of the input vector at each process.

• n = number of processes. We assume that n ≥ (d+ 2)f + 1.

• f = maximum number of faulty processes.

• V = {1, 2, · · · , n} is the set of all processes.

• dE(p, q) = Euclidean distance between points p and q.

• dH(h1, h2) = the Hausdorff distance between convex polytopes h1, h2.

• H(C) = the convex hull of a multiset C.

• L([h1, h2, · · · , hk]; [c1, c2, · · · , ck]), defined in Section 2, is a linear combination of convex
polytopes h1, h2, ..., hk with weights c1, c2, · · · , ck, respectively.

• |X| = the size of a multiset or set X.

• ‖a‖ = the absolute value of a real number a.

• F denotes the actual set of faulty processes in an execution of the algorithm.

• F [t] (t ≥ 0), defined in Section 3, denotes the set of (faulty) processes that do not send any
messages in round t. Thus, each process in F [t] must have crashed before sending any message
in round t (it may have possibly crashed in an earlier round). Note that F [r] ⊆ F [r+ 1] ⊆ F
for r ≥ 1.

• We use boldface upper case letters to denote matrices, rows of matrices, and their elements.
For instance, A denotes a matrix, Ai denotes the i-th row of matrix A, and Aij denotes the
element at the intersection of the i-th row and the j-th column of matrix A.

B Proof of Lemma 1

Lemma 1: Algorithm CC ensures progress: (i) all the fault-free processes will eventually progress
to round 1; and, (ii) if all the fault-free processes progress to the start of round t, t ≥ 1, then all
the fault-free processes will eventually progress to the start of round t+ 1.

Proof:

Part (i): By assumption, all fault-free processes begin the round 0 eventually, and perform a
broadcast of their input (line 1). There at least 3f + 1 processes as argued in Section 2, and at
most f may crash. The Liveness property of stable vector ensures that it will eventually return (on
line 3). Therefore, each process that does not crash in round 0 will eventually proceed to round 1
(line 6).
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Part (ii): The proof is by induction. Suppose that the fault-free processes begin round t ≥ 1.
(We already proved that the fault-free processes begin round 1.) Thus, each fault-free process i
will perform a broadcast of (hi[t−1], i, t) on line 9. By the assumption of reliable channels, process
i will eventually receive message (hj [t− 1], j, t) from each fault-free process j. Thus, it will receive
messages from at least n − f − 1 other processes, and include these received messages in MSGi[t]
(line 10-11). Also, it includes (on line 8) its own message into MSGi[t]. Thus, MSGi[t] is sure to reach
size n− f eventually, and process i will be able to progress to round t+ 1 (line 12-15). �

C Proof of Lemma 2

The proof of Lemma 2 uses the following theorem by Tverberg [16]:

Theorem 4 (Tverberg’s Theorem [16]) For any integer f ≥ 0, for every multiset T containing at
least (d+1)f +1 points in a d-dimensional space, there exists a partition T1, .., Tf+1 of T into f +1

non-empty multisets such that ∩f+1
l=1 H(Tl) 6= ∅.

Now, we prove Lemma 2.

Lemma 2: For each process i ∈ V −F [1], the polytope hi[0] is non-empty and convex.

Proof:

Consider any i ∈ V −F [1]. Consider the computation of polytope hi[0] on line 5 of the algorithm
as

hi[0] := ∩C⊆Xi, |C|=|Xi|−f H(C), (16)

where Xi := {x | (x, k, 0) ∈ Ri} (lines 4-5). Convexity of hi[0] follows directly from (16), because
hi[0] is an intersection of convex hulls.

Recall that, due to the lower bound on n discussed in Section 1, we assume that n ≥ (d+2)f+1.
Thus, |Xi| ≥ n− f ≥ (d+ 1)f + 1. By Theorem 4 above, there exists a partition T1, T2, · · · , Tf+1

of Xi into multisets (Tj ’s) such that ∩f+1
j=1H(Tj) 6= ∅. Let us define

J = ∩f+1
j=1H(Tj) (17)

Thus, by Tverberg’s theorem above, J is non-empty. Now, each multiset C used in (16) to com-
pute hi[0] excludes only f elements of Xi, whereas there are f + 1 multisets in the partition
T1, T2, · · · , Tf+1 of multiset Xi. Therefore, each multiset C will fully contain at least one multiset
from the partition. It follows that H(C) will contain J defined above. Since this property holds true
for each multiset C used to compute hi[0], J is contained in the convex polytope hi[0] computed
as per (16). Since J is non-empty, hi[0] is non-empty.

�

D Proof of Theorem 1

Theorem 1: For t ≥ 1, define v[t] = M[t]v[t− 1], with M[t] as specified above. Then, for τ ≥ 0,
and for all i ∈ V −F [τ + 1], vi[τ ] equals hi[τ ].
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Proof: The proof of the above theorem is by induction on τ . Recall that we defined vi[0] to be
equal to hi[0] for all i ∈ V − F [1] in the initialization step (I1) in Section 3. Thus, the theorem
trivially holds for τ = 0.

Now, for some τ ≥ 0, and for all i ∈ V − F [τ + 1], suppose that vi[τ ] = hi[τ ]. Recall that
processes in V − F [τ + 2] surely survive at least till the end of round τ + 1 (by definition of
F [τ + 2]). Therefore, in round τ + 1 ≥ 1, each process in i ∈ V − F [τ + 2] computes its new
state hi[τ + 1] at line 14 of Algorithm CC, using function L( Yi[τ + 1] ; [ 1

|Yi[τ+1]| , · · · ,
1

|Yi[τ+1]| ]),

where Yi[τ + 1] := {h | (h, j, τ + 1) ∈ MSGi[τ + 1]}. Also, if (h, j, τ + 1) ∈ MSGi[τ + 1], then process
j must have sent round τ + 1 message (hj [τ ], j, τ + 1) to process i – in other words, h above (in
(h, j, τ + 1) ∈ MSGi[τ + 1]) must be equal to hj [τ ]. Also, since j did send a round τ + 1 message,
j ∈ V −F [τ + 1]. Thus, by induction hypothesis, vj [τ ] = hj [τ ].

Now observe that, by definition of Yi[τ + 1] at line 13 of the algorithm, |Yi[τ + 1]| = |MSGi[τ +
1]|. Thus, the definition of the matrix elements in (8) and (9) ensures that Mi[τ + 1]v[τ ] equals
L( Yi[τ + 1] ; [ 1

|Yi[τ+1]| , · · · ,
1

|Yi[τ+1]| ]), i.e., hi[τ + 1]. Thus, vi[τ + 1] defined as Mi[τ + 1]v[τ ] also

equals hi[τ + 1]. This holds for all i ∈ V −F [τ + 2], completing the induction. �

E Useful Lemmas

In this section, we prove four lemmas used later in Appendix F.

The procedure for constructing M[t] that the lemma below refers to is presented in Section 3.1.

Lemma 4 For t ≥ 1, transition matrix M[t] constructed using the above procedure satisfies the
following conditions:

• M[t] is a row stochastic matrix.

• For i, j ∈ V − F [t + 1], there exists a fault-free process g(i, j) such that Mig(i,j)[t] ≥ 1
n and

Mjg(i,j)[t] ≥ 1
n

Proof:

• Observe that, by construction, for each i ∈ V , the row vector Mi[t] contains only non-negative
elements, which add up to 1. Thus, each row Mi[t] is a stochastic vector, and hence the matrix
M[t] is row stochastic.

• To prove the second claim in the lemma, consider any pair of processes i, j ∈ V − F [t + 1].
Recall that the set MSGi[t] used in the construction of M[t] is such that |MSGi[t]| = |Yi[t]|
(i.e., MSGi[t] is the message set at the point where Yi[t] is created). Thus, |MSGi[t]| ≥ n − f
and |MSGj [t]| ≥ n − f , and there must be at least n − 2f messages in MSGi[t] ∩ MSGj [t]. By
assumption, n ≥ (d+ 2)f + 1. Hence, n− 2f ≥ df + 1 ≥ f + 1, since d ≥ 1. Therefore, there
exists a fault-free process g(i, j) such that (hg(i,j)[t − 1], g(i, j), t) ∈ MSGi[t] ∩ MSGj [t]. By (8)

in the procedure to construct M[t], Mig(i,j)[t] = 1
|MSGi[t]| ≥

1
n and Mjg(i,j)[t] = 1

|MSGj [t]| ≥
1
n .

�
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To facilitate the proof of next lemma below, we first introduce some terminology and results
related to matrices.

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are defined as follows
[21]:

δ(A) = max
j

max
i1,i2

‖Ai1 j −Ai2 j‖

λ(A) = 1−min
i1,i2

∑
j

min(Ai1 j ,Ai2 j)

Claim 1 For any p square row stochastic matrices A(1),A(2), . . . ,A(p),

δ(Πp
τ=1A(τ)) ≤ Πp

τ=1 λ(A(τ)).

Claim 1 is proved in [10].

Claim 2 If there exists a constant γ, where 0 < γ ≤ 1, such that, for any pair of rows i, j of
matrix A, there exists a column g (that may depend on i, j) such that, min(Aig,Ajg) ≥ γ, then
λ(A) ≤ 1− γ < 1.

Claim 2 follows directly from the definition of λ(· ).

Lemma 5 For t ≥ 1, let P[t] = Πt
τ=1 M[τ ]. Then,

• P[t] is a row stochastic matrix.

• For i, j ∈ V − F , and k ∈ V ,

‖Pik[t]−Pjk[t] ‖ ≤
(

1− 1

n

)t
(18)

where ‖a‖ denotes absolute value of real number a.

Proof: By the first claim of Lemma 4, M[τ ] for 1 ≤ τ ≤ t is row stochastic. Thus, P[t] is a
product of row stochastic matrices, and hence, it is itself also row stochastic.

Now, observe that by the second claim in Lemma 4 and Claim 2, λ(M[t]) ≤ 1 − 1
n < 1. Then

by Claim 1 above,

δ(P[t]) = δ(Πt
τ=1M[τ ]) ≤ Πt

τ=1λ(M[τ ]) ≤
(

1− 1

n

)t
(19)

Consider any two fault-free processes i, j ∈ V − F . By (19), δ(P[t]) ≤
(
1− 1

n

)t
. Therefore, by

the definition of δ(·), for 1 ≤ k ≤ n, we have

‖Pik[t]−Pjk[t]‖ ≤
(

1− 1

n

)t
(20)
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We now prove two lemmas related to validity of convex hulls computed in Algorithm CC. Recall
that a valid convex hull is defined in Definition 3.

Lemma 6 hi[0] for each process i ∈ V −F [1] is valid.

Proof: Recall that hi[0] is obtained on line 5 of Algorithm CC as

hi[0] := ∩C⊆Xi, |C|=|Xi|−f H(C),

where Xi = {x | (x, k, 0) ∈ Ri}. Under the crash faults with incorrect inputs model, except for up
to f values in Xi (which may correspond to inputs at faulty processes), all the other values in Xi

must correspond to inputs at fault-free processes (and hence they are correct). Therefore, at least
one set C used in the computation of hi[0] must contain only the inputs at fault-free processes.
Therefore, hi[0] is in the convex hull of the inputs at fault-free processes. That is, hi[0] is valid. �

Lemma 7 Suppose non-empty convex polytopes h1, h2, · · · , hν are all valid. Consider ν constants
c1, c2, · · · , cν such that 0 ≤ ci ≤ 1 and

∑ν
i=1 ci = 1. Then the linear combination of these convex

polytopes, L([h1, h2, · · · , hν ] ; [c1, c2, · · · , cν ]), is convex, non-empty, and valid.

Proof: Polytopes h1, · · · , hν are given as non-empty, convex, and valid. Let

L := L([h1, h2, · · · , hν ] ; [c1, c2, · · · , cν ]) (21)

We will show that L is convex, non-empty, and valid.

L is convex: Given any two points x, y in L, by Definition 2, we have

x =
∑

1≤i≤ν
cip(i,x) for some p(i,x) ∈ hi, 1 ≤ i ≤ ν (22)

and

y =
∑

1≤i≤ν
cip(i,y) for some p(i,y) ∈ hi, 1 ≤ i ≤ ν (23)

Now, we show that any convex combination of x and y is also in L defined in (21). Consider a
point z such that

z = θx+ (1− θ)y where 0 ≤ θ ≤ 1 (24)

Substituting (22) and (23) into (24), we have

z = θ
∑

1≤i≤ν
cip(i,x) + (1− θ)

∑
1≤i≤ν

cip(i,y)

=
∑

1≤i≤ν
ci
(
θp(i,x) + (1− θ)p(i,y)

)
(25)
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Define p(i,z) = θp(i,x) + (1 − θ)p(i,y) for 1 ≤ i ≤ ν. Since hi is convex, and p(i,z) is a convex
combination of p(i,x) and p(i,y), p(i,z) is also in hi. Substituting the definition of p(i,z) in (25), we
have

z =
∑

1≤i≤ν
ci p(i,z) where p(i,z) ∈ hi, 1 ≤ i ≤ ν

Hence, by Definition 2, z is also in L. Therefore, L is convex.

L is non-empty: The proof that L is non-empty is trivial. Since each of the hi’s is non-empty,
there exists at least one point zi ∈ hi for 1 ≤ i ≤ ν. Then

∑
1≤i≤ν cizi is in L, and hence L is

non-empty.

L is valid: The proof that L is valid is also straightforward. Since each of the hi’s is valid, each
point in each hi is a convex combination of the inputs at the fault-free processes. Since each point
in L is a convex combination of points in hi’s, it then follows that each point in L is in the convex
hull of the inputs at fault-free processes. �

F Proof of Theorem 2

Theorem 2: Algorithm CC satisfies the validity, ε-agreement and termination properties.

Proof: We prove that Algorithm CC satisfies the validity, ε-agreement and termination properties
after a large enough number of asynchronous rounds.

Repeated applications of Lemma 1 ensures that the fault-free processes will progress from round
0 through round r, for any r ≥ 0, allowing us to use (11). Consider round t ≥ 1. Let

P[t] = Πt
τ=1M[τ ] (26)

Validity: We prove validity using the series of observations below:

• Observation 1: By Lemma 2 (in Appendix C) and Lemma 6 (in Appendix E), hi[0] for each
i ∈ V − F [1] is non-empty and valid. Also, each such hi[0] is convex by construction (line 5
of Algorithm CC).

• Observation 2: As per the initialization step (I1) (in Section 3.1), for each i ∈ V − F [1],
vi[0] := hi[0]; thus, by Observation 1 above, for each such process i, vi[0] is convex, valid and
non-empty. Also, in initialization step (I2) (in Section 3.1), for each process k ∈ F [1], we set
vk[0] := hm[0], where m is a fault-free process; thus, by Observation 1, for each such process
k, vk[0] is convex, valid and non-empty. Therefore, each element of v[0] is a non-empty,
convex and valid polytope.

• Observation 3: By Lemma 5 in Appendix E, P[t] is a row stochastic matrix. Thus, elements
of each row of P[t] are non-negative and add up to 1. Therefore, by Observation 2 above,
and Lemma 7 in Appendix E, Pi[t]v[0] for each i ∈ V − F is valid, convex and non-empty.
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Also, by Theorem 1, and equation (11), hi[t] = P[t]v[0] for i ∈ V − F . Thus, hi[t] is valid,
convex and non-empty for t ≥ 1.

Therefore, Algorithm CC satisfies the validity property.

ε-Agreement and Termination: Recall that by Lemma 5 in Appendix E, for any two fault-free
processes i, j ∈ V − F , and for 1 ≤ k ≤ n, we have

‖Pik[t]−Pjk[t]‖ ≤
(

1− 1

n

)t
Processes in F [1] do not send any messages to any other process in round 1 and beyond. Thus,

by the construction of M[t], for each a ∈ V − F [1] and b ∈ F [1], Mab[t] = 0 for all t ≥ 1; it then
follows that Pab[t] = 0 as well.3

Consider fault-free processes i, j ∈ V −F . (In the following discussion, we will denote a point in
the d-dimensional Euclidean space by a list of its d coordinates.) The previous paragraph implies
that, for any point qi in hi[t] = vi[t] = Pi[t]v[0], there must exist, for all k ∈ V − F [1], pk ∈ hk[0],
such that

qi =
∑

k∈V−F [1]

Pik[t]pk =

 ∑
k∈V−F [1]

Pik[t]pk(1),
∑

k∈V−F [1]

Pik[t]pk(2), · · · ,
∑

k∈V−F [1]

Pik[t]pk(d)


(27)

where pk(l) denotes the value of pk’s l-th coordinate. The list on the right-hand-side of the above
equation represents the d coordinates of point pi.

Using points pk in the above equation, now choose point qj in hj [t] defined as follows.

qj =
∑

k∈V−F [1]

Pjk[t]pk =

 ∑
k∈V−F [1]

Pjk[t]pk(1),
∑

k∈V−F [1]

Pjk[t]pk(2), · · · ,
∑

k∈V−F [1]

Pjk[t]pk(d)


(28)

Recall that the Euclidean distance between qi and qj is dE(qi, qj). From Lemma 5 (in Appendix
E), (27) and (28), we have the following:

3Claim 3 in Appendix G below provides a more detailed proof of this statement.
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dE(qi, qj) =

√√√√ d∑
l=1

(qi(l)− qj(l))2

=

√√√√√ d∑
l=1

 ∑
k∈V−F [1]

Pik[t]pk(l)−
∑

k∈V−F [1]

Pjkpk(l)

2

by (27) and (28)

=

√√√√√ d∑
l=1

 ∑
k∈V−F [1]

(Pik[t]−Pjk[t])pk(l)

2

≤

√√√√√ d∑
l=1

(1− 1

n

)2t
 ∑
k∈V−F [1]

‖pk(l)‖

2 by Lemma 5

=

(
1− 1

n

)t√√√√√ d∑
l=1

 ∑
k∈V−F [1]

‖pk(l)‖

2

Define

Ω = max
pk∈hk[0],k∈V−F [1]

√√√√ d∑
l=1

(
∑

k∈V−F [1]

‖pk(l)‖)2

Then, we have

dE(qi, qj) ≤
(

1− 1

n

)t√√√√√ d∑
l=1

 ∑
k∈V−F [1]

‖pk(l)‖

2

≤ (1− 1

n
)t Ω (29)

Because the hk[0]’s in the definition of Ω are all valid (by Lemma 6 in Appendix E), Ω can
itself be upper bounded by a function of the input vectors at the fault-free processes. In particular,
under the assumption that each element of fault-free processes’ input vectors is upper bounded by
U and lower bounded by µ, Ω is upper bounded by

√
dn2 max(U2, µ2). Observe that the upper

bound on the right-hand-side of (29) monotonically decreases with t, because 1 − 1
n < 1. Define

tend as the smallest positive integer t for which(
1− 1

n

)t√
dn2 max(U2, µ2) < ε (30)

Recall that the algorithm terminates after tend rounds. Since tend is finite, the algorithms satisfies
the termination condition.

(29) and (30) together imply that, for fault-free processes i, j and for each point qi ∈ hi[tend],
there exists a point qj [t] ∈ hj [tend], such that dE(qi, qj) < ε (and, similarly, vice-versa). Thus, by
Definition of Hausdorff distance, dH(hi[tend], hj [tend]) < ε. Since this holds true for any pair of
fault-free processes i, j, the ε-agreement property is satisfied at termination. �
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G Proof of Lemma 3

We first prove a claim that will be used in the proof of Lemma 3.

Claim 3 For t ≥ 1, let P[t] = Πt
τ=1M[τ ]. Then, for all processes j ∈ V − F [t+ 1], and k ∈ F [1],

Pjk[t] = 0.

Proof: The claim is intuitively straightforward. For completeness, we present a formal proof here.
The proof is by induction on t.

Induction Basis: Consider the case when t = 1, j ∈ V −F [2], and k ∈ F [1]. Then by definition
of F [1], (∗, k, 0) 6∈ MSGj [1]. Then, due to (9), Mjk[1] = 0, and hence Pjk[1] = Mjk[1] = 0.

Induction: Consider t ≥ 2. Assume that the claim holds true through round t − 1. Then,
Pjk[t− 1] = 0 for all j ∈ V −F [t] and k ∈ F [1]. Recall that P[t− 1] = Πt−1

τ=1M[τ ].

Now, we will prove that the claim holds true for round t. Consider j ∈ V −F [t+1] and k ∈ F [1].
Note that P[t] = Πt

τ=1M[τ ] = M[t]Πt−1
τ=1M[τ ] = M[t]P[t− 1]. Thus, Pjk[t] can be non-zero only if

there exists a q ∈ V such that Mjq[t] and Pqk[t− 1] are both non-zero.

For any q ∈ F [t−1], (∗, q, t−1) 6∈ MSGj [t]. Then, due to (9), Mjq[t] = 0 for all q ∈ F [t−1], and
hence all q ∈ F [1] (note that F [r− 1] ⊆ F [r] for r ≥ 2). Additionally, by the induction hypothesis,
for all q ∈ V − F [t] and k ∈ F [1], Pqk[t − 1] = 0. Thus, these two observations together imply
that there does not exist any q ∈ V such that Mjq[t] and Pqk[t − 1] are both non-zero. Hence,
Pjk[t] = 0. �

Now, we are ready to prove Lemma 3.

Lemma 3: For all i ∈ V −F [t+ 1] and t ≥ 0, IZ ⊆ hi[t].
Proof: Recall that Z and IZ are defined in (14) and (15), respectively. We first prove that for all
j ∈ V −F [1], IZ ⊆ hj [0]. We make the following observations for each process i ∈ V −F [1]:

• Observation 1: By the definition of multiset Xi at line 4 of round 0 at process i, and the
definition of XZ in Section 3.2, we have XZ ⊆ Xi.

• Observation 2: Let A and B be sets of points in the d-dimensional space, where |A| ≥
n − f , |B| ≥ n − f and A ⊆ B. Define hA := ∩CA⊆A,|CA|=|A|−f H(CA) and hB :=
∩CB⊆B,|CB |=|B|−f H(CB). Then hA ⊆ hB. This observation follows directly from the fact
that every multiset CA in the computation of hA is contained in some multiset CB used in
the computation of hB, and the property of H.

Now, consider the computation of hi[0] at line 5. By Observations 1 and 2, and the definitions
of hi[0] and IZ , we have that IZ ⊆ hi[0] = vi[0], where i ∈ V −F [1]. Also, by initialization step (I2)
(in Section 3.1), for k ∈ F [1], vk[0] = hm[0], for some fault-free process m. Thus, all the elements
of v[0] contain IZ . Then, due to row stochasticity of Πt

τ=1M[τ ], it follows that each element of
v[t] =

(
Πt
τ=1M[τ

)
v[0] also contain IZ . Recalling that hi[t] = vi[t] for each fault-free process,

proves the claim of the lemma.

�

21



H Proof of Theorem 3

Theorem 3: Algorithm CC is optimal under the notion of optimality in Section 1.

Proof: Consider multiset XZ defined in Section 3.2. Recall that |XZ | = |Z|, and that Z contains
at least n− f tuples. Thus, XZ contains at least n− f points, and of these at least n− 2f points
must be the inputs at fault-free processes. Let VZ denote the set of fault-free processes whose
inputs appear in XZ . Let S = V − F − VZ . Since |XZ | ≥ n− f , |S| ≤ f .

Now consider the following execution of any algorithm ALGO that correctly solves approximate
convex consensus. Suppose that the faulty processes in F do not crash, but have an incorrect
input. Consider the case when processes in S are so slow that the other fault-free processes must
terminate before receiving any messages from the processes in S. The fault-free processes in VZ
cannot determine whether the processes in S are just slow, or they have crashed.

Processes in VZ must be able to terminate without receiving any messages from the processes in
S. Thus, their output must be in the convex hull of inputs at the fault-free processes whose inputs
are included in XZ . However, any f of the processes whose inputs are in XZ may potentially be
faulty and have incorrect inputs. Therefore, the output obtained by ALGO must be contained in
IZ as defined in Section 3.2. On the other hand, by Lemma 3 in Appendix G, the output obtained
using Algorithm CC contains IZ . This proves the theorem. �

I Convex Function Optimization

I.1 Notion of Optimality

We can extend the notion of optimality (of convex consensus algorithms) in Section 1 to convex
function optimization as follows. An algorithm A for convex function optimization is said to be
optimal if the following condition is true.

Let F denote a set of up to f faulty processes. For a given execution of algorithm A
with F being the set of faulty processes, let yi(A) denote the output at process i at the
end of the given execution. For any other algorithm B, there exists an execution with F
being the set of faulty processes, such that yi(B) is the output at fault-free process i, and
c(yj(A)) ≤ c(yj(B)) for each fault-free process j.

The intuition behind the above formulation is as follows. A goal of function optimization here is
to allow the processes to “learn” the smallest value of the cost function over the convex hull of
the inputs at the fault-free processes. The above condition implies that an optimal algorithm will
learn a function value that is no larger than that learned in a worst-case execution of any other
algorithm.

The 2-step convex function optimization algorithm, with the first step being convex consensus,
as described in Section 4, is optimal in the above sense. This is a direct consequence of Theorem 3.

I.2 Impossibility Result

The four properties for convex function optimization problem introduced in Section 4 are:

• Validity: output yi at fault-free process i is a point in the convex hull of the correct inputs.
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• ε-Agreement: for a given constant ε > 0, for any fault-free processes i, j, dE(yi, yj) < ε.

• Weak β-Optimality: (i) for any constant β > 0, for any fault-free processes i, j, ‖c(yi) −
c(yj)‖ < β, and (ii) if at least 2f + 1 processes (faulty or fault-free) have an identical input,
say x, then for any fault-free process i, c(yi) ≤ c(x).

• Termination: each fault-free process must terminate within a finite amount of time.

The theorem below proves the impossibility of satisfying the above properties for n ≥ 4f + 1
and d ≥ 1. From our prior discussion, we know that we need n ≥ (d + 2)f + 1 even without the
weak β-optimality requirement. Thus, for d ≥ 2, the theorem implies that for d ≥ 2 and any n,
the above properties cannot be satisfied. For the specific case of d = 1, we do not presently know
whether the above properties can be satisfied when 3f + 1 ≤ n ≤ 4f .

Theorem 5 All the four properties above cannot be satisfied simultaneously in an asynchronous
system in the presence of crash faults with incorrect inputs for n ≥ 4f + 1 and d ≥ 1.

Proof: We will prove the result for d = 1. It should be obvious that impossibility with d = 1
implies impossibility for larger d (since we can always choose inputs that have 0 coordinates in all
dimensions except one).

The proof is by contradiction. Suppose that there exists an algorithm, say Algorithm A, that
achieves the above four properties for n ≥ 4f + 1 and d = 1.

Let the cost function be given by c(x) = 4− (2x− 1)2 for x ∈ [0, 1] and c(x) = 3 for x 6∈ [0, 1].
For future reference note that within the interval [0, 1], function c(x) has the smallest value at
x = 0, 1 both.

Now suppose that all the inputs (correct and incorrect) are restricted to be binary, and must
be 0 or 1. (We will prove impossibility under this restriction on the inputs at faulty and fault-
free processes both, which suffices to prove that the four properties cannot always be satisfied.)
Suppose that the output of Algorithm A at fault-free process i is yi. Due to the validity property,
and because the inputs are restricted to be 0 or 1, we know that yi ∈ [0, 1].

Since dn2 e ≥ d
4f+1
2 e = 2f + 1, at least 2f + 1 processes will have either input 0, or input 1.

Without loss of generality, suppose that at least 2f + 1 processes have input 0.

Consider a fault-free process i. By weak β-Optimality, c(yi) ≤ c(0), that is, c(yi) ≤ 3. However,
the minimum value of the cost function is 3 over all possible inputs. Thus, c(yi) = 3. Similarly,
for any other fault-free process j as well, c(yj) must equal 3. Now, due to validity, yj ∈ [0, 1], and
the cost function is 3 in interval [0, 1] only at x = 0, 1. Therefore, we must have yi equal to 0 or
1, and yj also equal to 0 or 1. However, because algorithm A satisfies the ε-agreement condition,
dE(yi, yj) = ‖yi − yj‖ < ε (recall that dimension d = 1). If ε < 1, then yi and yj must be identical
(because we already know that they are either 0 or 1). Since this condition holds for any pair
of fault-free processes, it implies exact consensus. Also, yi and yj will be equal to the input at a
fault-free process due to the validity property above, and because the inputs are restricted to be 0
or 1. In other words, Algorithm A can be used to solve exact consensus in the presence of crash
faults with incorrect inputs when n ≥ 4f + 1 in an asynchronous system. This contradicts the
well-known impossibility result by Fischer, Lynch, and Paterson [8]. �
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