
Iterative Byzantine Vector Consensus in Incomplete Graphs ∗

Nitin H. Vaidya

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

nhv@illinois.edu

July 8, 2013

Abstract

This work addresses Byzantine vector consensus (BVC), wherein the input at each process is
a d-dimensional vector of reals, and each process is expected to decide on a decision vector that is
in the convex hull of the input vectors at the fault-free processes [3, 8]. The input vector at each
process may also be viewed as a point in the d-dimensional Euclidean space Rd, where d > 0 is a
finite integer. Recent work [3, 8] has addressed Byzantine vector consensus in systems that can
be modeled by a complete graph. This paper considers Byzantine vector consensus in incomplete
graphs. In particular, we address a particular class of iterative algorithms in incomplete graphs,
and prove a necessary condition, and a sufficient condition, for the graphs to be able to solve
the vector consensus problem iteratively. We present an iterative Byzantine vector consensus
algorithm, and prove it correct under the sufficient condition. The necessary condition presented
in this paper for vector consensus does not match with the sufficient condition for d > 1; thus,
a weaker condition may potentially suffice for Byzantine vector consensus.

1 Introduction

This work addresses Byzantine vector consensus (BVC), wherein the input at each process is a
d-dimensional vector of reals, and each process is expected to decide on a decision vector that is
in the convex hull of the input vectors at the fault-free processes [3, 8]. The input vector at each
process may also be viewed as a point in the d-dimensional Euclidean space Rd, where d > 0 is
a finite integer. Due to this correspondence, we use the terms point and vector interchangeably.
Recent work [3, 8] has addressed Byzantine vector consensus in systems that can be modeled by
a complete graph. The correctness conditions for Byzantine vector consensus (elaborated below)
cannot be satisfied by independently performing consensus on each element of the input vectors;
therefore, new algorithms are necessary. Here we consider Byzantine vector consensus in incomplete
graphs. In particular, we address a particular class of iterative algorithms in incomplete graphs, and
prove a necessary condition, and a sufficient condition, for the graphs to be able to solve the vector
consensus problem iteratively. The paper extends our past work on scalar consensus in incomplete
graphs in presence of Byzantine faults [9], which yielded an exact characterization of graphs in
which the problem is solvable. We present an iterative Byzantine vector consensus algorithm, and

∗This research is supported in part by National Science Foundation award CNS-1059540 and Army Research Office
grant W-911-NF-0710287. Any opinions, findings, and conclusions or recommendations expressed here are those of
the authors and do not necessarily reflect the views of the funding agencies or the U.S. government.

1

prove it correct under the sufficient condition; the proof follows a structure previously used in our
work to prove correctness of other consensus algorithms [7, 5].

The necessary condition presented in this paper for vector consensus does not match with the
sufficient condition for d > 1; thus, it is possible that a weaker condition may also suffice for
Byzantine vector consensus. We hope that this paper will motivate further work on identifying the
tight sufficient condition.

In other related work [6], we present another generalization of the consensus problem considered
in [3, 8]. In particular, [6] considers the problem of deciding on a convex hull (instead of just one
point) that is contained in the convex hull of the inputs at the fault-free nodes.

The paper is organized as follows. Section 2 presents our system model. The iterative algorithm
structure considered in our work is presented in Section 3. Section 4 presents a necessary condition,
and Section 5 presents a sufficient condition. Section 5 also presents an iterative algorithm and
proves its correctness under the sufficient condition. The paper concludes with a summary in
Section 6.

2 System Model

The system is assumed to be synchronous.1 The communication network is modeled as a simple
directed graph G(V, E), where V = {1, . . . , n} is the set of n processes, and E is the set of directed
edges between the processes in V. Thus, |V| = n. We assume that n ≥ 2, since the consensus
problem for n = 1 is trivial. Process i can reliably transmit messages to process j, j 6= i, if and
only if the directed edge (i, j) is in E . Each process can send messages to itself as well, however,
for convenience of presentation, we exclude self-loops from set E . That is, (i, i) 6∈ E for i ∈ V. We
will use the terms edge and link interchangeably.

For each process i, let N−i be the set of processes from which i has incoming edges. That is,
N−i = { j | (j, i) ∈ E }. Similarly, define N+

i as the set of processes to which process i has outgoing
edges. That is, N+

i = { j | (i, j) ∈ E }. Since we exclude self-loops from E , i 6∈ N−i and i 6∈ N+
i .

However, we note again that each process can indeed send messages to itself.

We consider the Byzantine failure model, with up to f processes becoming faulty. A faulty
process may misbehave arbitrarily. The faulty processes may potentially collaborate with each
other. Moreover, the faulty processes are assumed to have a complete knowledge of the execution
of the algorithm, including the states of all the processes, contents of messages the other processes
send to each other, the algorithm specification, and the network topology.

Notation: We use the notation |X| to denote the size of a set or a multiset, and the notation
‖x‖ to denote the absolute value of a real number x.

3 Byzantine Vector Consensus and Iterative Algorithms

Byzantine vector consensus: We are interested in iterative algorithms that satisfy the fol-
lowing conditions in presence of up to f Byzantine faulty processes:

1Analogous results can be similarly derived for asynchronous systems, using the asynchronous algorithm structure
presented in [9] for the case of d = 1.

2

• Termination: Each fault-free process must terminate after a finite number of iterations.

• Validity: The state of each fault-free process at the end of each iteration must be in the
convex hull of the d-dimensional input vectors at the fault-free processes.

• ε-Agreement: When the algorithm terminates, the l-th elements of the decision vectors at any
two fault-free processes, where 1 ≤ l ≤ d, must be within ε of each other, where ε > 0 is a
pre-defined constant.

Any information carried over by a process from iteration t to iteration t + 1 is considered the
state of process t at the end of iteration t. The above validity condition forces the algorithms
to maintain “minimal” state, for instance, precluding the possibility of remembering messages
received in several of the past iterations, or remembering the history of detected misbehavior of the
neighbors. Therefore, we focus on algorithms with a simple iterative structure, described below.

Iterative structure: Each process i maintains a state variable vi, which is a d-dimensional
vector. The initial state of process i is denoted as vi[0], and it equals the input provided to process
i. For t ≥ 1, vi[t] denotes the state of process i at the end of the t-th iteration of the algorithm. At
the start of the t-th iteration (t ≥ 1), the state of process i is vi[t− 1]. The iterative algorithms of
interest will require each process i to perform the following three steps in the t-th iteration. Each
“value” referred in the algorithm below is a d-dimensional vector (or, equivalently, a point in the
d-dimensional Euclidean space).

1. Transmit step: Transmit current state, namely vi[t− 1], on all outgoing edges to processes in
N+
i .

2. Receive step: Receive values on all incoming edges from processes in N−i . Denote by ri[t] the
multiset2 of values received by process i from its neighbors. The size of multiset ri[t] is |N−i |.

3. Update step: Process i updates its state using a transition function Ti as follows. Ti is a part
of the specification of the algorithm, and takes as input the multiset ri[t] and state vi[t− 1].

vi[t] = Ti (ri[t] , vi[t− 1]) (1)

The decision (or output) of each process equals its state when the algorithm terminates.

We assume that each element of the input vector at each fault-free process is lower bounded by
a constant µ and upper bounded by a constant U . The iterative algorithm may terminate after a
number of rounds that is a function of µ and U . µ and U are assumed to be known a priori. This
assumption holds in many practical systems, because the input vector elements represent quantities
that are constrained. For instance, if the input vectors are probability vectors, then U = 1 and
µ = 0. If the input vectors represent locations in 3-dimensional space occupied by mobile robots,
then U and µ are determined by the boundary of the region in which the robots are allowed to
operate.

In Section 4, we develop a necessary condition that the graph G(V, E) must satisfy in order for
the Byzantine vector consensus algorithm to be solvable using the above iterative structure. In
Section 5, we develope a sufficient condition, such that the Byzantine vector consensus algorithm
is solvable using the above iterative structure in any graph that satisfies this condition. We present
an iterative algorithm, and prove its correctness under the sufficient condition.

2The same value may occur multiple times in a multiset.

3

4 A Necessary Condition

Hereafter, when we refer to an iterative algorithm, we mean an algorithm with the iterative structure
specified in the previous section. In this section, we state a necessary condition on graph G(V, E)
to be able to achieve Byzantine vector consensus using an iterative algorithm. First we introduce
some notations.

Definition 1

• Define e0 to be a d-dimensional vector with all its elements equal to 0. Thus, e0 corresponds
to the origin in the d-dimensional Euclidean space.

• Define ei, 1 ≤ i ≤ d, to be a d-dimensional vector with the i-th element equal to 2ε, and the
remaining elements equal to 0. Recall that ε is the parameter of the ε-agreement condition.

Definition 2 For non-empty disjoint sets of processes A and B, and a non-negative integer c,

• A c−→ B if and only if there exists a process v ∈ B that has at least c+1 incoming edges from
processes in A, i.e., |N−v ∩A| ≥ c+ 1.

• A 6 c−→ B iff A
c−→ B is not true.

Definition 3 H(X) denotes the convex hull of a multiset of points X.

Now we state the necessary condition.

Condition NC: For any partition V0, V1, · · · , Vp, C, F of set V, where 1 ≤ p ≤ d, Vk 6= ∅ for
0 ≤ k ≤ p, and |F | ≤ f , there exist i, j (0 ≤ i, j ≤ p, i 6= j), such that

Vi ∪ C
f−→ Vj

That is, there are f + 1 incoming links from processes in Vi ∪ C to some process in Vj.

Lemma 1 If the Byzantine vector consensus problem can be solved using an iterative algorithm in
G(V, E), then G(V, E) satisfies Condition NC.

Proof: The proof is by contradiction. Suppose that Condition NC is not true. Then there exists
a certain partition V0, V1, · · · , Vp, C, F such that Vk 6= ∅ (1 ≤ k ≤ p), |F | ≤ f , and for 0 ≤ i, k ≤ p,

Vk ∪ C 6
f−→ Vi.

Let the initial state of each process in Vi be ei (0 ≤ i ≤ p). Suppose that all the processes in
set F are faulty. For each link (j, k) such that j ∈ F and k ∈ Vi (0 ≤ i ≤ p), the faulty process j
sends value ei to process j in each iteration.

We now prove by induction that if the iterative algorithm satisfies the validity condition then
the state of each fault-free process j ∈ Vi at the start of iteration t equals ei, for all t > 0. The claim

4

is true for t = 1 by assumption on the inputs at the fault-free processes. Now suppose that the
claim is true through iteration t, and prove it for iteration t+ 1. Thus, the state of each fault-free
process in Vi at the start of iteration t equals ei, 0 ≤ i ≤ p.

Consider any fault-free process j ∈ Vi, where 0 ≤ i ≤ p. In iteration t, process j will receive
vg[t−1] from each fault-free incoming neighbor g, and receive ei from each faulty incoming neighbor.
These received values form the multiset rj [t]. Since the condition in the lemma is assumed to be
false, for any k 6= i, 0 ≤ k ≤ p, we have

Vk ∪ C 6
f−→ Vi.

Thus, at most f incoming neighbors of j belong to Vk ∪C, and therefore, at most f values in rj [t]
equal ek.

Since process j does not know which of its incoming neighbors, if any, are faulty, it must allow
for the possibility that any of its f incoming neighbors are faulty. Let Ak ⊆ Vk ∪ C, k 6= i, be the

set containing all the incoming neighbors of process j in Vk ∪ C. Since Vk ∪ C 6
f−→ Vi, |Ak| ≤ f ;

therefore, all the processes in Ak are potentially faulty. Also, by assumption, the values received
from all fault-free processes equal their input, and the values received from faulty processes in F
equal ei. Thus, due to the validity condition, process j must choose as its new state a value that
is in the convex hull of the set

Sk = {em | m 6= k, 0 ≤ m ≤ p}.

where k 6= i. Since this observation is true for each k 6= i, it follows that the new state vj [t] must
be a point in the convex hull of

∩1≤k≤p, k 6=i H(Sk).

It is easy to verify that the above intersection only contains the point ei. Therefore, vj [t] = ei.
Thus, the state of process j at the start of iteration t+ 1 equals ei. This concludes the induction.

The above result implies that the state of each fault-free process remains unchanged through
the iterations. Thus, the state of any two fault-free processes differs in at least one vector element
by 2ε, precluding ε-agreement. 2

The above lemma demonstrates the necessity of Condition NC. Necessary condition NC implies a
lower bound on the number of processes n = |V| in G(V, E), as stated in the next lemma.

Lemma 2 Suppose that the Byzantine vector consensus problem can be solved using an iterative
algorithm in G(V, E). Then, n ≥ (d+ 2)f + 1.

Proof: Since the Byzantine vector consensus problem can be solved using an iterative algorithm
in G(V, E), by Lemma 1, graph G must satisfy Condition NC. Suppose that 2 ≤ |V| = n ≤ (d+2)f .
Then there exists p, 1 ≤ p ≤ d, such that we can partition V into sets V0, ..., Vp, F such that for
each Vi, 0 < |Vi| ≤ f , and |F | ≤ f . Define C = ∅. Since |C ∪ Vi| ≤ f for each i, it is clear that this
partition of V cannot satisfy Condition NC. This is a contradiction. 2

When d = 1, the input at each process is a scalar. For the d = 1 case, our prior work [9] yielded
a tight necessary and sufficient condition for Byzantine consensus to be achievable in G(V, E) using
iterative algorithms. For d = 1, the necessary condition stated in Lemma 1 is equivalent to the

5

necessary condition in [9]. We previously showed that, for d = 1, the same condition is also sufficient
[9]. However, in general, for d > 1, Condition NC is not proved sufficient. Instead, we prove the
sufficiency of another condition stated in the next section.

5 A Sufficient Condition

We now present Condition SC that is later proved to be sufficient for achieving Byzantine vector
consensus in graph G(V, E) using an iterative algorithm.

Condition SC: For any partition F,L,C,R of set V, such that L and R are both non-empty,

and |F | ≤ f , at least one of these conditions is true: R ∪ C df−→ L, or L ∪ C df−→ R.

Later in the paper we will present a Byzantine vector consensus algorithm named Byz-Iter that
is proved correct in all graphs that saitsfy Condition SC. The proof will make use of Lemmas 3 and
4 presented below.

Lemma 3 For f > 0, if graph G(V, E) satisfies Condition SC, then in-degree of each process in V
must be at least (d+ 1)f + 1. That is, for each i ∈ V, |N−i | ≥ (d+ 1)f + 1.

Lemma 3 is proved in Appendix A.

Definition 4 Reduced Graph: For a given graph G(V, E) and F ⊂ V such that |F| ≤ f , a
graph H(VF , EF) is said to be a reduced graph, if: (i) VF = V −F , and (ii) EF is obtained by first
removing from E all the links incident on the processes in F , and then removing up to df additional
incoming links at each process in VF .

Note that for a given G(V, E) and a given F , multiple reduced graphs may exist (depending on the
choice of the links removed at each process).

Lemma 4 Suppose that graph G(V, E) satisfies Condition SC, and F ⊂ V. Then, in any reduced
graph H(VF , EF), there exists a process that has a directed path to all the remaining processes in
VF .

Lemma 4 is proved in Appendix B.

5.1 Algorithm Byz-Iter

We will prove that, if graph G(V, E) satisfies Condition SC, then Algorithm Byz-Iter presented
below achieves Byzantine vector consensus. Algorithm Byz-Iter has the three-step structure de-
scribed in Section 3.

The proposed algorithm is based on the following result by Tverberg [4].

Theorem 1 (Tverberg’s Theorem [4]) For any integer f ≥ 0, and for every multiset Y containing
at least (d+ 1)f + 1 points in Rd, there exists a partition Y1, · · · , Yf+1 of Y into f + 1 non-empty

multisets such that ∩f+1
l=1 H(Yl) 6= ∅.

6

The points in Y above need not be distinct [4]; thus, the same point may occur multiple times in
Y , and also in each of its subsets (Yl’s) above. The partition in Theorem 1 is called a Tverberg

partition, and the points in ∩f+1
l=1 H(Yl) in Theorem 1 are called Tverberg points.

Algorithm Byz-Iter

Each iteration consists of three steps: Transmit, Receive, and Update:

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges.

2. Receive step: Receive values on all incoming edges. These values form multiset ri[t] of
size |N−i |. (If a message is not received from some incoming neighbor, then that neighbor
must be faulty. In this case, the missing message value is assumed to be e0 by default.
Recall that we assume a synchronous system.)

3. Update step: Form a multiset Zi[t] using the steps below:

• Initialize Zi[t] as empty.

• Add to Zi[t], any one Tverberg point corresponding to each multiset C ⊆ ri[t] such
that |C| = (d + 1)f + 1. Since |C| = (d + 1)f + 1, by Theorem 1, such a Tverberg
point exists.

Zi[t] is a multiset; thus a single point may appear in Zi[t] more than once. Note that

|Zi[t]| =
(|ri[t]|
(d+1)f+1

)
≤
(n
(d+1)f+1

)
. Compute new state vi[t] as:

vi[t] =
vi[t− 1] +

∑
z∈Zi[t] z

1 + |Zi[t]|
(2)

Termination: Each fault-free process terminates after completing tend iterations, where tend
is a constant defined later in (9). The value of tend depends on graph G(V, E), constants U
and µ defined earlier, and parameter ε of ε-agreement.

The proof of correctness of Algorithm Byz-Iter makes use of a matrix representation of the
algorithm’s behavior. Before presenting the matrix representation, we introduce some notations
and definitions related to matrices.

5.2 Matrix Preliminaries

We use boldface letters to denote matrices, rows of matrices, and their elements. For instance,
A denotes a matrix, Ai denotes the i-th row of matrix A, and Aij denotes the element at the
intersection of the i-th row and the j-th column of matrix A.

Definition 5 A vector is said to be stochastic if all its elements are non-negative, and the elements
add up to 1. A matrix is said to be row stochastic if each row of the matrix is a stochastic vector.

For matrix products, we adopt the “backward” product convention below, where a ≤ b,

Πb
τ=aA[τ] = A[b]A[b− 1] · · ·A[a] (3)

7

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are defined as follows [10]:

δ(A) = max
j

max
i1,i2

‖Ai1 j −Ai2 j‖

λ(A) = 1−min
i1,i2

∑
j

min(Ai1 j ,Ai2 j)

Claim 1 For any p square row stochastic matrices A(1),A(2), . . . ,A(p),

δ(Πp
τ=1A(τ)) ≤ Πp

τ=1 λ(A(τ)).

Claim 1 is proved in [2]. Claim 2 below follows directly from the definition of λ(·).

Claim 2 If all the elements in any one column of matrix A are lower bounded by a constant γ,
then λ(A) ≤ 1− γ. That is, if ∃g, such that Aig ≥ γ, ∀i, then λ(A) ≤ 1− γ.

5.3 Correctness of Algorithm Byz-Iter

This section presents a key lemma, Lemma 5, that helps us in proving the correctness of Algorithm
Byz-Iter. In particular, Lemma 5 allows us to use results for non-homogeneous Markov chains to
prove the correctness of Algorithm Byz-Iter.

Let F denote the actual set of faulty processes in a given execution of Algorithm Byz-Iter. Let
|F| = ψ. Thus, 0 ≤ ψ ≤ f . Without loss of generality, suppose that processes 1 through (n − ψ)
are fault-free, and if ψ > 0, processes (n− ψ + 1) through n are faulty.

In the analysis below, it is convenient to view the state of each process as a point in the d-
dimensional Euclidean space. Denote by v[0] the column vector consisting of the initial states of
the (n−ψ) fault-free processes. The i-th element of v[0] is vi[0], the initial state of process i. Thus,
v[0] is a vector consisting of (n− ψ) points in the d-dimensional Euclidean space. Denote by v[t],
for t ≥ 1, the column vector consisting of the states of the (n − ψ) fault-free processes at the end
of the t-th iteration. The i-th element of vector v[t] is state vi[t].

Lemma 5 Suppose that graph G(V, E) satisfies Condition SC. Then the state updates performed
by the fault-free processes in the t-th iteration (t ≥ 1) of Algorithm Byz-Iter can be expressed as

v[t] = M[t] v[t− 1] (4)

where M[t] is a (n− ψ)× (n− ψ) row stochastic matrix with the following property: there exists a
reduced graph H[t], and a constant β (0 < β ≤ 1) that depends only on graph G(V, E), such that

Mij [t] ≥ β

if j = i or edge (j, i) is in H[t].

Proof: The proof is presented in Appendix C. 2

Matrix M[t] above is said to be a transition matrix. As the lemma states, M[t] is a row
stochastic matrix. The proof of Lemma 5 shows how to identify a suitable row stochastic matrix

8

M[t] for each iteration t. The matrix M[t] depends on t, as well as the behavior of the faulty
processes. Mi[t] is the i-th row of transition matrix M[t]. Thus, (4) implies that

vi[t] = Mi[t] v[t− 1]

That is, the state of any fault-free process i at the end of iteration t can be expressed as a convex
combination of the state of just the fault-free processes at the end of iteration t − 1. Recall that
vector v only includes the state of fault-free processes.

Theorem 2 Algorithm Byz-Iter satisfies the termination, validity and ε-agreement conditions.

Proof: Sections 5.4, 5.5 and 5.6 provide the proof that Algorithm Byz-Iter satisfies the three
conditions for Byzantine vector consensus. This proof follows a structure used to prove correctness
of other consensus algorithms in our prior work [7, 5]. 2

5.4 Algorithm Byz-Iter Satisfies the Validity Condition

Observe that M[t+ 1] (M[t]v[t− 1]) = (M[t+ 1]M[t]) v[t− 1]. Therefore, by repeated application
of (4), we obtain for t ≥ 1,

v[t] =
(

Πt
τ=1M[τ]

)
v[0] (5)

Since each M[τ] is row stochastic, the matrix product Πt
τ=1M[τ] is also a row stochastic matrix.

Recall that vector v only includes the state of fault-free processes. Thus, (5) implies that the state
of each fault-free process i at the end of iteration t can be expressed as a convex combination of
the initial state of the fault-free processes. Therefore, the validity condition is satisfied.

5.5 Algorithm Byz-Iter Satisfies the Termination Condition

Algorithm Byz-Iter stops after a finite number (tend) of iterations, where tend is a constant that
depends only on G(V, E), U , µ and ε. Therefore, trivially, the algorithm satisfies the termination
condition. Later, using (9) we define a suitable value for tend.

5.6 Algorithm Byz-Iter Satisfies the ε-Agreement Condition

The proof structure below is derived from our previous work wherein we proved the correctness of an
iterative algorithm for scalar Byzantine consensus (i.e., the case of d = 1) [7] and its generalization
to a broader class of fault sets [5].

Let RF denote the set of all the reduced graph of G(V, E) corresponding to fault set F . Thus,
RF is the set of all the reduced graph of G(V, E) corresponding to actual fault set F . Let

r = max
|F |≤f

|RF |.

r depends only on G(V, E) and f , and it is finite. Note that |RF | ≤ r.
For each reduced graph H ∈ RF , define connectivity matrix H as follows, where 1 ≤ i, j ≤ n−ψ:

• Hij = 1 if either j = i, or edge (j, i) exists in reduced graph H.

9

• Hij = 0, otherwise.

Thus, the non-zero elements of row Hi correspond to the incoming links at process i in the reduced
graph H, and the self-loop at process i. Observe that H has a non-zero diagonal.

Lemma 6 For any H ∈ RF , and any k ≥ n − ψ, matrix product Hk has at least one non-zero
column (i.e., a column with all elements non-zero).

Proof: Each reduced graph contains n− ψ processes because the fault set F contain ψ processes.
By Lemma 4, at least one process in the reduced graph, say process p, has directed paths to all the
processes in the reduced graph H. Element Hk

jp of matrix product Hk is 1 if and only if process
p has a directed path to process j containing at most k edges; each of these directed paths must
contain less than n−ψ edges, because the number of processes in the reduced graph is n−ψ. Since
p has directed paths to all the processes, it follows that, when k ≥ n − ψ, all the elements in the
p-th column of Hk must be non-zero. 2

For matrices A and B of identical dimensions, we say that A ≤ B if and only if Aij ≤ Bij ,
∀i, j. Lemma 7 relates the transition matrices with the connectivity matrices. Constant β used in
the lemma below was introduced in Lemma 5.

Lemma 7 For any t ≥ 1, there exists a reduced graph H[t] ∈ RF such that βH[t] ≤M[t], where
H[t] is the connectivity matrix for H[t].

Proof: Appendix D presents the proof. 2

Lemma 8 At least one column in the matrix product Π
u+r(n−ψ)−1
t=u H[t] is non-zero.

Proof: Since Π
u+r(n−ψ)−1
t=u H[t] is a product of r(n−ψ) connectivity matrices corresponding to the

reduced graphs in RF , and |RF | ≤ r, connectivity matrix corresponding to at least one reduced
graph in RF , say matrix H∗ , will appear in the above product at least n− ψ times.

By Lemma 6, Hn−ψ
∗ contains a non-zero column; say the p-th column of H∗ is non-zero. Also,

by definition, all the connectivity matrices (H[t]) have a non-zero diagonal. These two observations

together imply that the p-th column in the product Π
u+r(n−ψ)−1
t=u H[t] is non-zero.3

2

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these matrices is a
product of r(n− ψ) of the M[t] matrices. Specifically,

Q(i) = Π
ir(n−ψ)
t=(i−1)r(n−ψ)+1 M[t] (6)

From (5) and (6) observe that

v[kr(n− ψ)] =
(

Πk
i=1 Q(i)

)
v[0] (7)

Lemma 9 For i ≥ 1, Q(i) is a row stochastic matrix, and

λ(Q(i)) ≤ 1− βr(n−ψ).
3The product Π

z+r(n−ψ)−1
t=z H[t] can be viewed as the product of (n − ψ) instances of H∗ “interspersed” with

matrices with non-zero diagonals.

10

Proof: Q(i) is a product of row stochastic matrices (M[t]); therefore, Q(i) is row stochastic. From
Lemma 7, for each t ≥ 1,

βH[t] ≤ M[t]

Therefore,

βr(n−ψ) Π
ir(n−ψ)
t=(i−1)r(n−ψ)+1 H[t] ≤ Π

ir(n−ψ)
t=(i−1)r(n−ψ)+1 M[t] = Q(i)

By using u = (i− 1)r(n−ψ) + 1 in Lemma 8, we conclude that the matrix product on the left side
of the above inequality contains a non-zero column. Therefore, since β > 0, Q(i) on the right side
of the inequality also contains a non-zero column.

Observe that r(n−ψ) is finite, and hence, βr(n−ψ) is non-zero. Since the non-zero terms in H[t]

matrices are all 1, the non-zero elements in Π
ir(n−ψ)
t=(i−1)r(n−ψ)+1H[t] must each be ≥ 1. Therefore, there

exists a non-zero column in Q(i) with all the elements in the column being ≥ βr(n−ψ). Therefore,
by Claim 2, λ(Q(i)) ≤ 1− βr(n−ψ). 2

Let us now continue with the proof of ε-agreement. Consider the coefficient of ergodicity
δ(Πt

i=1M[i]).

δ(Πt
i=1M[i]) = δ

((
Πt
i=b t

r(n−ψ)
cr(n−ψ)+1

M[i]

)(
Π
b t
r(n−ψ)

c
i=1 Q(i)

))
by definition of Q(i)

≤ λ

(
Πt
i=b t

r(n−ψ)
cr(n−ψ)+1

M[i]

)
Π
b t
r(n−ψ)

c
i=1 λ(Q(i)) by Claim 1

≤ Π
b t
r(n−ψ)

c
i=1 λ(Q(i)) because λ(.) ≤ 1

≤
(
1− βr(n−ψ)

)b t
r(n−ψ)

c
by Lemma 9

≤ (1− βrn)b
t
rn
c because 0 < β ≤ 1 and 0 ≤ ψ < n. (8)

Observe that the upper bound on right side of (8) depends only on graph G(V, E) and t, and is
independent of the input vectors, the fault set F , and the behavior of the faulty processes. Also, the
upper bound on the right side of (8) is a non-increasing function of t. Define tend as the smallest
positive integer t for which the right hand side of (8) is smaller than ε

nmax(‖U‖,‖µ‖) , where ‖x‖
denotes the absolute value of real number x. Thus,

δ(Πtend
i=1 M[i]) ≤ (1− βrn)

⌊ tend
rn

⌋
<

ε

nmax(‖U‖, ‖µ‖)
(9)

Recall that β and r depend only on G(V, E). Thus, tend depends only on graph G(V, E), and
constants U , µ and ε.

Recall that Πt
i=1M[i] is a (n− ψ)× (n− ψ) row stochastic matrix. Let M∗ = Πt

i=1M[i]. From
(5) we know that state vj [t] of any fault-free process j is obtained as the product of the j-th row
of Πt

i=1 M[i] and v[0]. That is, vj [t] = M∗
jv[0].

Recall that vj [t] is a d-dimensional vector. Let us denote the l-th element of vj [t] as vj [t](l),
1 ≤ l ≤ d. Also, by v[0](l), let us denote a vector consisting of the l-th elements of vi[0],∀i. Then
by the definitions of δ(.), U and µ, for any two fault-free processes j and k, we have

‖vj [t](l)− vk[t](l)‖ = ‖M∗
jv[0](l)−M∗

kv[0](l)‖ (10)

11

= ‖
n−ψ∑
i=1

M∗
jivi[0](l)−

n−ψ∑
i=1

M∗
kivi[0](l)‖ (11)

= ‖
n−ψ∑
i=1

(
M∗

ji −M∗
ki

)
vi[0](l)‖ (12)

≤
n−ψ∑
i=1

‖M∗
ji −M∗

ki‖ ‖vi[0](l)‖ (13)

≤
n−ψ∑
i=1

δ(M∗)‖vi[0](l)‖ (14)

≤ (n− ψ)δ(M∗) max(‖U‖, ‖µ‖) (15)

≤ (n− ψ) max(‖U‖, ‖µ‖) δ(Πt
i=1M[i])

≤ nmax(‖U‖, ‖µ‖) δ(Πt
i=1M[i]) because 0 ≤ ψ < n (16)

Therefore, by (9) and (16),

‖vi[tend](l)− vj [tend](l)‖ < ε, 1 ≤ l ≤ d. (17)

The output of a fault-free process equals its state at termination (after tend iterations). Thus, (17)
implies that Algorithm Byz-Iter satisfies the ε-agreement condition.

6 Summary

This paper addresses Byzantine vector consensus (BVC), wherein the input at each process is a
d-dimensional vector of reals, and each process is expected to decide on a decision vector that is in
the convex hull of the input vectors at the fault-free processes [3, 8]. We address a particular class
of iterative algorithms in incomplete graphs, and prove a necessary condition (NC), and a sufficient
condition (SC), for the graphs to be able to solve the vector consensus problem iteratively. This
paper extends our past work on scalar consensus (i.e., d = 1) in incomplete graphs in presence of
Byzantine faults [9, 7], which yielded an exact characterization of graphs in which the problem is
solvable for d = 1. However, the necessary condition NC presented in the paper for vector consensus
does not match with the sufficient condition SC. We hope that this paper will motivate further
work on identifying the tight sufficient condition.

References

[1] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill Higher Education,
2006.

[2] J. Hajnal. Weak ergodicity in non-homogeneous markov chains. In Proceedings of the Cambridge
Philosophical Society, volume 54, pages 233–246, 1958.

[3] H. Mendes and M. Herlihy. Multidimensional approximate agreement in byzantine asynchronous
systems. In 45th ACM Symposium on the Theory of Computing (STOC), June 2013.

12

[4] M. A. Perles and M. Sigron. A generalization of Tverberg’s theorem, 2007. CoRR,
http://arxiv.org/abs/0710.4668.

[5] L. Tseng and N. H. Vaidya. Iterative approximate byzantine consensus under a generalized
fault model. In International Conference on Distributed Computing and Networking (ICDCN),
January 2013.

[6] L. Tseng and N. H. Vaidya, Byzantine Convex Consensus: An Optimal Algorithm, 2013. CoRR,
http://arxiv.org/abs/1307.1332.

[7] N. H. Vaidya. Matrix representation of iterative approximate byzantine consensus in directed
graphs. CoRR http://arxiv.org/abs/1203.1888, March 2012.

[8] N. H. Vaidya and V. K. Garg. Byzantine vector consensus in complete graphs. In ACM
Symposium on Principles of Distributed Computing (PODC), July 2013.

[9] N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate byzantine consensus in arbitrary
directed graphs. In ACM Symposium on Principles of Distributed Computing (PODC), July
2012.

[10] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices. In Proceedings of
the American Mathematical Society, pages 733–737, 1963.

A Proof of Lemma 3

Lemma 3 For f > 0, if graph G(V, E) satisfies Condition SC, then in-degree of each process in
V must be at least (d+ 1)f + 1. That is, for each i ∈ V, |N−i | ≥ (d+ 1)f + 1.

Proof: The proof is by contradiction. As per the assumption in the lemma, f > 0, and graph
G(V, E) satisfies condition SC.

Suppose that some process i has in-degree at most (d+1)f . Define L = {i}, and C = ∅. Partition
the processes in V − {i} into sets R and F such that |F | ≤ f , |F ∩ N−i | ≤ f and |R ∩ N−i | ≤ df .
Such sets R and F exist because in-degree of process i is at most (d+ 1)f . L,R,C, F thus defined
form a partition of V.

Now, f > 0 and d ≥ 1, and |L ∪ C| = 1. Thus, there can be at most 1 link from L ∪ C to

any process in R, and 1 ≤ df . Therefore, L ∪ C 6 df−→ R. Also, because C = ∅, |(R ∪ C) ∩ N−i | =
|R ∩ N−i | ≤ df . Thus, there can be at most df links from R ∪ C to process i, which is the only

process in L = {i}. Therefore, R ∪ C 6 df−→ L. Thus, the above partition of V does not satisfy
Condition SC. This is a contradiction. 2

B Proof of Lemma 4

Before presenting the proof of Lemma 4, we introduce some terminology.

Definition 6 Graph decomposition: Let H be a directed graph. Partition graph H into strongly
connected components, H1, H2, · · · , Hh, where h is a non-zero integer dependent on graph H, such
that

13

• every pair of processes within the same strongly connected component has directed paths in
H to each other, and

• for each pair of processes, say i and j, that belong to two different strongly connected com-
ponents, either i does not have a directed path to j in H, or j does not have a directed path
to i in H.

Construct a graph H∗ wherein each strongly connected component Hk above is represented by vertex
ck, and there is an edge from vertex ck to vertex cl only if the processes in Hk have directed paths
in H to the processes in Hl.

It is known that the decomposition graph H∗ is a directed acyclic graph [1].

Definition 7 Source component: Let H be a directed graph, and let H∗ be its decomposition as
per Definition 6. Strongly connected component Hk of H is said to be a source component if the
corresponding vertex ck in H∗ is not reachable from any other vertex in H∗.

Lemma 4 Suppose that graph G(V, E) satisfies Condition SC, and F ⊂ V. Then, in any reduced
graph H(VF , EF), there exists a process that has a directed path to all the remaining processes in VF .

Proof: Suppose that graph G(V, E) satisfies Condition SC. We first prove that the reduced graph
H(VF , EF) contains exactly one source component.

Since |F| < |V|, reduced graph H(VF , EF) contains at least one process; therefore, at least one
source component must exist in the reduced graph H. (If H consists of a single strongly connected
component, then that component is trivially a source component.)

So it remains to prove that H(VF , EF) cannot contain more than one source component. The
proof is by contradiction.

Suppose that the decomposition of H(VF , EF) contains at least two source components. Let
the sets of processes in two such source components of the reduced graph H be denoted as L and
R, respectively. Let C = VF − L− R = V − F − L− R. Observe that F , L, C,R form a partition
of the processes in V. Since L is a source component in the reduced graph H(VF , EF), there are no
directed links in EF from any process in C ∪R to the processes in L. Similarly, since R is a source
component in the reduced graph H, there are no directed links in EF from any process in L ∪ C
to the processes in R. These observations, together with the manner in which EF is defined, imply
that (i) there are at most df links in E from the processes in C ∪ R to each process in L, and (ii)
there are at most df links in E from the processes in L∪C to each process in R. Therefore, in graph

G(V, E), C ∪ R 6 df−→ L and L ∪ C 6 df−→ R. This violates Condition SC, resulting in a contradiction.
Thus, we have proved that H(VF , EF) must contain exactly one source component.

Consider any process in the unique source component, say process s. By definition of a strongly
connected component, process s has directed paths to all the processes in the source component
using the edges in EF . Also, by the uniqueness of the source component, all other strongly connected
components in H (if any exist) are not source components, and hence reachable from the source
component the edges in EF . Therefore, process s also has paths to all the processes in VF that are
outside the source component as well. Therefore, process s has paths to all the process in VF . This
proves the lemma. 2

14

The above proof shows that, if Condition SC is true, then each reduced graph contains exactly
one source component. It is also possible to show that, if each reduced graph H contains exactly
one source component, then Condition SC is satisfied.

C Proof of Lemma 5

Recall that F is actual set of faults in a given execution of the proposed algorithm, and |F| = ψ.
As noted before, without loss of generality, we assume that processes 1 through n−ψ are fault-free,
and rest are faulty. To simplify the terminology, the definition below assumes a certain iteration
index t ≥ 1.

Definition 8 χ-dependence: For a constant χ, 0 ≤ χ ≤ 1, a point r in the convex hull of
{vi[t − 1] | 1 ≤ i ≤ n − ψ} is said to be χ-dependent on process k if there exist constants αi,
1 ≤ i ≤ n− ψ, such that 0 ≤ αi ≤ 1,

∑
1≤k≤n−ψ αi = 1, and

αk ≥ χ

such that
r =

∑
1≤i≤n−ψ

αi vi[t− 1]

αi is said to be the weight of vi[t− 1] in the above convex combination.

Lemma 10 Let P ⊆ V−F be a non-empty subset of fault-free processes. Any point r in the convex
hull of {vj [t− 1] | j ∈ P} is 1

n -dependent on at least one fault-free process in P .

Proof: Recall that we assume processes 1 through n − ψ to be fault-free, and the remaining
processes to be faulty. Any point r in the convex hull of the state of fault-free processes in P can
be written as their convex combination. Since there are at most n fault-free processes in P , and
their weights in the convex combination add to 1, at least one of the weights must be ≥ 1

n , proving
the lemma. 2

Definition 9 Points in multiset R are said to be collectively χ-dependent on processes in set P , if
for each p ∈ P , there exists r ∈ R such that r is χ-dependent on p.

Lemma 5 Suppose that graph G(V, E) satisfies Condition SC. Then the state updates performed
by the fault-free processes in the t-th iteration (t ≥ 1) of Algorithm Byz-Iter can be expressed as

v[t] = M[t] v[t− 1] (18)

where M[t] is a (n− ψ)× (n− ψ) row stochastic matrix with the following property: there exists a
reduced graph H[t], and a constant β (0 < β ≤ 1) that depends only on graph G(V, E), such that

Mij [t] ≥ β

if j = i or edge (j, i) is in H[t].

Proof: We consider the case of f = 0 separately from f > 0.

15

• f = 0: When f = 0, all the processes are fault-free (i.e., F = ∅), and (d+ 1)f + 1 = 1. In this
case, there is only one reduced graph, which is identical to G(V, E). Because (d+1)f +1 = 1,
each multiset C used in the Update step of Algorithm Byz-Iter to compute multiset Zi[t]
contains value received from exactly one incoming neighbor. (When f = 0, and Condition
SC holds true, it is possible that exactly one process in the graph has no incoming neighbors.
If some process j has no incoming neighbors, then Zj [t] = ∅.)
For C = {x}, that is, C containing a single point x, the Tverberg point for f = 0 is x as well.
Thus, |Zi[t]| = |N−i |, and vi[t] is simply the average of vi[t− 1] and the values received from
all the incoming neighbors of i, which are necessarily fault-free (because f = 0). Thus, vi[t]
is a convex combination of the elements of v[t − 1], wherein the weight assigned to each j
such that j = i or (j, i) ∈ E is 1

1+|N−
i |

. Since 1 + |N−i | ≤ n, by defining β = 1
n , the statement

of the lemma follows.

• f > 0: Consider a fault-free process i. Suppose that the number of faulty incoming neighbors
of process i is fi ≤ f . When Condition SC holds, and f > 0, as shown in Lemma 3, each
process has an in-degree of at least (d+ 1)f + 1. Therefore, for some integer κ ≥ 1, let

|ri[t]| = |N−i | = (d+ 1)f + κ = df + (f − fi + κ) + fi.

Recall that the Update step of Algorithm Byz-Iter enumerates suitable subsets C of multiset
ri[t], and picks one Tverberg point corresponding to each such C. By an inductive argument
we will identify κ such subsets C1, C2, · · · , Cκ, such that the Tverberg points added to Zi[t]
corresponding to those κ subsets are collectively dependent on at least (f+1)−fi = f−fi+κ
fault-free incoming neighbors of process i. Let the Tverberg point added corresponding to Cj
be denoted as zj .

– Consider a subset C1 of ri[t] such that |C1| = (d+ 1)f + 1. A Tverberg point z1 for C1

is added to Zi[t] in the Update step. By the definition of a Tverberg point, there exists
a partition V1, V2, · · · , Vf+1 of multiset C1, wherein each Vj is non-empty, such that

z1 ∈ ∩1≤j≤f+1H(Vj)

Since process i has at most fi faulty incoming neighbors, at most fi values in C1 are
received from faulty neighbors. Thus, at least (f + 1)− fi = f − fi + 1 of the subsets in
the above partition contain values received from only fault-free neighbors of process i.
For each such fault-free Vk, z1 ∈ H(Vk), and by Lemma 10, z1 must be 1

n -dependent on
at least one fault-free neighbor of i whose value is included in Vk. Since the Vj ’s form a
partition, this implies that there are f −fi+ 1 distinct fault-free incoming neighbors of i
on which z1 is 1

n -dependent. Let {p1, p2, · · · , pf−fi+1} denote f−fi+1 distinct incoming
fault-free neighbors of i on which z1 is 1

n -dependent. Note that {p1, p2, · · · , pf−fi+1} is
a subset of the processes whose values are included in C1.

If κ = 1, then we have already identified the subsets C1, · · · , Cκ as desired. If κ > 1,
then we inductively identify the remaining Ci’s below.

– Suppose that κ > 1, and that we have identified subsets C1, · · · , Cν , where 1 ≤ ν < κ
such that {z1, z2, · · · , zν} are collectively 1

n -dependent on f − fi + ν distinct incoming
fault-free neighbors of process i that form the set {p1, p2, · · · , pf−fi+ν}. (The previous
item proved the correctness of this assumption for ν = 1.)

Pick a subset
Cν+1 ⊆ ri[t]− ∪νj=1 {vpj [t− 1]},

16

such that |Cν+1| = (d+ 1)f + 1. In other words, Cν+1 does not contain values received
from the ν neighbors in {p1, p2, · · · , pν} (these neighbors are fault-free by definition, and
hence correctly send their state). Such a set Cν+1 must exist because 1 ≤ ν < κ, and
|N−i | = (d+ 1)f + κ ≥ (d+ 1)f + 1 + ν.

Note that ri[t] is a multiset, and ri[t] − ∪νj=1 {vpj [t − 1]} is a multiset as well. As an
example, if a value appears in ri[t] three time, and appears only once in ∪νj=1 {vpj [t−1]},
then that value will appear twice in ri[t]− ∪νj=1 {vpj [t− 1]}.
By an argument similar to the previous item, we can show that the Tverberg point
zν+1 corresponding to Cν+1 must be 1

n -dependent on at least f − fi + 1 faulty-free
processes from whom the values in Cν+1 are received. By definition of Cν+1, processes
p1, · · · , pν are not among these f − fi + 1 processes. Thus, among these f − fi + 1
fault-free processes, there exists at least one fault-free incoming neighbor of i that is
not included in {p1, p2, · · · , pf−fi+ν}. Let us denote one such neighbor as pf−fi+ν+1.
Thus, we have identified set {p1, p2, · · · , pf−fi+ν+1} consisting of f − fi + ν+ 1 fault-free
incoming neighbors of process i such that the points in {z1, z2, · · · , zν+1} are collectively
1
n -dependent on {p1, p2, · · · , pf−fi+ν+1}.

Note that {z1, z2, · · · , zκ} ⊆ Zi[t]. The above argument inductively proves that there exist
f − fi + κ incoming fault-free neighbors of process i, forming set {p1, p2, · · · , pf−fi+κ} such
that the points in Zi[t] are collectively 1

n -dependent on them. Now observe the following:

1. z1 is 1
n -dependent on each fault-free process in {p1, p2, · · · , pf−fi+1}. Then, for each j,

1 ≤ j ≤ f − fi + 1, there exists a convex combination representation of z1 in terms of
elements of v[t− 1], in which the weight of process pj is at least 1

n . By “averaging” over
these f − fi + 1 convex combination representations of z1, we can obtain another convex
combination representation of z1 in terms of the elements of v[t− 1] in which weight of
each process in {p1, p2, · · · , pf−fi+1} is at least 1

n(f−fi+1) ≥
1
n2 .

2. When κ ≥ 2, for 2 ≤ ν ≤ κ, zν is 1
n -dependent on fault-free process pf−fi+ν . Thus,

there exists a convex combination representation of zν in terms of elements of v[t− 1],
in which the weight of process pf−fi+ν is at least 1

n ≥
1
n2 .

Recall that vi[t] is computed as average of the points in Zi[t], where {z1, z2, · · · , zκ} ⊆ Zi[t],
and |Zi[t]| ≤

(n
(d+1)f+1

)
. Thus, the two observations above imply that there exists a there

exists a convex combination representation of vi[t] in terms of elements of v[t− 1], in which
the weight of each process in {p1, p2, · · · , pf−fi+κ} is at least 1

n2(1+|Zi[t]) ≥
1

n2
(
1+(n

(d+1)f+1)
) .

β =
1

n2
(
1 +

(n
(d+1)f+1

)) (19)

and define set
Pi[t] = {p1, p2, · · · , pf−fi+κ}.

Note that |N−i ∩ (V − F)| = (d+ 1)f + κ− fi. Thus,

|Pi[t]| = f − fi + κ = |N−i ∩ (V − F)| − df (20)

Recall that we chose i to be any fault-free process in V −F . Thus, for each fault-free process
i, such a set Pi[t] exists, where |Pi[t]| = |N−i ∩ (V − F)| − df . Therefore, for each fault-free

17

process i, there exists a convex combination representation of vi[t] in terms of elements of
v[t − 1], in which the weight of each process in {i} ∪ Pi[t] is at least β. In particular, there
exist weights αj ’s such that

∑
j∈{i}∪N−

i
αj = 1, 0 ≤ αj ≤ 1 for all j ∈ {i} ∪N−i , and

vi[t] =
∑

j∈{i}∪N−
i

αj vj [t− 1] and

αj ≥ β for j ∈ {i} ∪ Pi[t]. (21)

Let us now define i-th row of matrix M[t] as follows:

– Mij [t] = αj , for j ∈ {i} ∪N−i , and

– Mij [t] = 0, otherwise.

Due to (20), the subgraph consisting of only the fault-free processes in V −F , such that each
process i ∈ V − F only has incoming links from the processes in Pi[t] is a reduced graph.
Then, defining this subgraph as H[t], the lemma follows from (21).

2

D Proof of Lemma 7

Lemma 7: For any t ≥ 1, there exists a reduced graph H[t] ∈ RF such that βH[t] ≤M[t], where
H[t] is the connectivity matrix for H[t].

Proof: By Lemma 5, there exists a reduced graph H[t] such that Mij [t] ≥ β, if j = i or edge
(j, i) is in the reduced graph H[t].

Let H[t] denote the connectivity matrix for reduced graph H[t]. Then Hij [t] denotes the element
in i-row and j-th column of H[t]. By definition of the connectivity matrix, we know that Hij [t] = 1
if j = i or edge (j, i) is in the reduced graph; otherwise, Hij [t] = 0.

The claim in Lemma 7 then follows from the above two observations. 2

18

