DISTRIBUTED COMPUTING SEMINAR disc.ece.illinois.edu/disc-seminar.php (TELE-SEMINAR) Staircase Codes for Fast and Secure Distributed Computing Rawad Bitar Electrical and Computer Engineering Rutgers University 3:00 pm September 28, 2017 (Thursday) 141 CSL We consider the setting of a master server who possesses confidential data (genomic, medical data, etc.) and wants to run intensive computations on it, as part of a machine-learning algorithm for example. The master wants to distribute these computations to untrusted workers who have volunteered or are incentivized to help with this task. However, the data must be kept private (in an information theoretic sense) and not revealed to the individual workers. The workers may be busy and introduce random delays to finish the task assigned to them. We are interested in secure coding schemes that can guarantee privacy and reduce the aggregate delay experienced by the master. Towards that goal, I will introduce a new family of codes, called Staircase codes, which can guarantee privacy and reduce delays. I will discuss briefly the construction of these codes and present theoretical guarantees on their delay performance under exponential delay model. Then, I will present results from experiments we ran on Amazon cloud. I will conclude with some problems that remain open. Bio: Rawad is a Ph.D. student in the ECE department at Rutgers University, New Jersey, working with Prof. Salim El Rouayheb. He received the Diploma degree in computer and communication engineering from the Lebanese University, Faculty of Engineering, Roumieh, Lebanon in 2013 and the M.S. degree from the Lebanese University, Doctoral school, Tripoli, Lebanon in 2014. His research interests are in the broad area of information theory and coding theory with a focus on coding for distributed storage and information theoretic security.