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ABSTRACT
With the availability of multiple unlicensed spectral bands, and
potential cost-based limitations on the capabilities of individual
nodes, it is increasingly relevant to study the performance of multi-
channel wireless networks with channel switching constraints. To
this effect, some constraint models have been recently proposed,
and connectivity and capacity results have been formulated for net-
works of randomly deployed single-interface nodes subject to these
constraints. One of these constraint models is termed random(c, f )
assignment, wherein each node is pre-assigned a random subset
of f channels out ofc (each having bandwidthWc ), and may only
switch on these. Previous results for this model established bounds
on network capacity, and proved that whenc = O(logn), theper-

flow capacity isO(W
√

prnd
nlogn) andΩ(W

√

f
cnlogn) (where prnd =

1− (1− f
c )(1− f

c−1)...(1− f
c− f+1) ≥ 1−e−

f 2

c ). In this paper we
present a lower bound construction that matches the previous upper

bound. This establishes the capacity asΘ(W
√

prnd
nlogn). The surpris-

ing implication of this result is that whenf = Ω(
√

c), random(c, f )
assignment yields capacity of the same order as attainable via un-
constrained switching. The routing/scheduling procedure used by
us to achieve capacity requires synchronized route-construction for
all flows in the network, leading to the open question of whether it
is possible to achieve capacity using asynchronous procedures.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design—Wireless communication
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1. INTRODUCTION
There has been much recent interest in exploiting the availability

of multiple channels in wireless networks. The transport capacity
of such networks has also been studied under various assumptions
on availability/capability of radio-interfaces.

It was shown in [7] that for a single-channel single-interface sce-
nario, in a randomly deployed network, per-flow capacity scales
as Θ( W√

nlogn
) bits/s under a Protocol Model of interference, and

that if the available bandwidthW is split intoc channels, with each
node having a dedicated interface per channel, the results remain
the same.

While many existing standards, e.g., IEEE 802.11a, 802.11b,
802.15.4 allow for multiple channels, nodes are typically hardware-
constrained and have much fewer interfaces. This issue was studied
in [9], under a model where nodes were capable of switching their
interface(s) to any channel. It was shown that givenc available
channels of bandwidthWc each, and 1≤ m≤ c interfaces per node,
capacity depends solely on the ratiocm. For a random network,
and the Protocol Model, three capacity regions were established.
Most relevant to our work is the regioncm = O(logn), where they
showed that capacity is the same as form= c, i.e.,Θ( W√

nlogn
) bits/s

per-flow.
In [3], a case was made for the need to study the performance of

multi-channel networks in situations where there are constraints on
channel switching. This study was motivated on the basis of future
low-cost transceiver designs involving limited tunability, as well as
cognitive radio networks. As more spectrum becomes freely avail-
able for unlicensed use, cost concerns are very likely to lead to situ-
ations where individual nodes can operate only over a much smaller
spectral range, and may possess heterogeneous capabilities. Thus
it is quite relevant to study the impact of switching constraints, and
attempt to quantify it.

Some constraint models were proposed in [3] to capture some
expected constraints, and two such models were analyzed, viz., ad-
jacent(c, f ) assignment and random(c, f ) assignment. The impact
of restricted switching was quantified by the parameterf (where f
is the number of channels an individual node may switch to). Re-
sults were presented for the regimec= O(logn). It was established

that per-flow capacity isΘ(W
√

f
cnlogn) for adjacent(c, f ) assign-

ment. For random(c, f ) assignment, an upper bound ofO(W
√

prnd
nlogn)

and a lower bound ofΩ(W
√

f
cnlogn) were established.



In this paper, we establish that the per-flow capacity with random
(c, f ) assignment (under the Protocol Model of interference) for the

regimec = O(logn) (2 ≤ f ≤ c) is Θ(W
√

prnd
nlogn) by presenting a

capacity-achieving lower bound construction. It can be shown that

prnd ≥ 1−e−
f 2

c . Thus, the somewhat surprising implication of this
result is that whenf = Ω(

√
c), random(c, f ) assignment yields ca-

pacity of the same order as attainable via unconstrained switching.
Hence

√
c-switchability is sufficient to make order-optimal use of

all c channels.
Interestingly, our capacity achieving routing/scheduling proce-

dure requires that all routes be computed in lock-step. This leaves
open the question of whether capacity can be achieved via asyn-
chronous routing/scheduling procedures.

2. NOTATION AND TERMINOLOGY
Throughout this paper, we use the following standard asymptotic

notation [4]:

• f (n) = O(g(n)) means that∃c,No, such that
f (n) ≤ cg(n) for n > No

• f (n) = o(g(n)) means that lim
n→∞

f (n)
g(n)

= 0

• f (n) = ω(g(n)) means thatg(n) = o( f (n))

• f (n) = Ω(g(n)) means thatg(n) = O( f (n))

• f (n) = Θ(g(n))means that∃c1,c2,No, such that
c1g(n) ≤ f (n) ≤ c2g(n) for n > No

When f (n)= O(g(n)), any functionh(n)= O( f (n)) is alsoO(g(n)).
We often refer to such a situation ash(n) = O( f (n)) =⇒ O(g(n)).

As in [7], we say that the per flow network throughput isλ(n) if
each flow in the network can be guaranteed a throughput of at least
λ(n) with probability 1, asn→ ∞.

Whenever we use log without explicitly specifying the base, we
imply thenatural logarithm.

3. NETWORK MODEL
We consider a network ofn single-interfacenodes deployed uni-

formly at random over a unit torus. Each node is the source of
exactly one flow. As in [7], each sourceSselects a destination by
first fixing on a pointD′ uniformly at random, and then picking the
nodeD (other than itself), that is closest toD′. The total bandwidth
(data-rate) available isW, and it is divided intoc channels of equal
bandwidthW

c , wherec = O(logn). We assume thatc≥ 2, asc = 1
implies thatf = 1 is the only possibility, which yields the degener-
ate single-channel case. We also assume 2≤ f ≤ c. A justification
for not allowing f = 1 for c ≥ 2 is given in [3], [1], where it was
shown that for the random(c, f ) model (and also the adjacent(c, f )
model described in [3]),f = 1 andc≥ 2 leads to zero capacity, as
some flow will get no throughput w.h.p.

4. RELATED WORK
It was shown by Gupta and Kumar [7] that, for a single-channel

single-interface scenario, the per flow capacity in a random net-
work scales asΘ( W√

nlogn
) bits/s. The throughput-delay trade-off

was studied in [6], and it was shown that the optimal trade-off
is given byD(n) = Θ(nT(n)) whereD(n) is delay, andT(n) is
throughput. In the multi-channel context, an interesting scenario
arises when the number of interfacesmat each node may be smaller
than the number of available channelsc. This issue was analyzed in

[9] and it was shown that the capacity results are a function of the
channel-to-interface ratiocm. It was also shown that in the random
network case, there are three distinct capacity regions: whenc

m =

O(logn), the per-flow capacity is W√
nlogn

, when c
m = Ω(logn) and

also O

(

n
(

log logn
logn

)2
)

, the per flow capacity isΘ(W
√ m

nc), and

when c
m = Ω

(

n
(

log logn
logn

)2
)

, the per-flow capacity isΘ(Wmlog logn
clogn ).

Connectivity and capacity of multi-channel wireless networks with
channel switching constraints were considered in [3]. Results were
presented for two specific constraint models, viz., adjacent(c, f )
assignment and random(c, f ) assignment. It was shown that when
c = O(logn), capacity with adjacent(c, f ) assignment scales as

Θ(W
√

f
cnlogn). For random(c, f ) assignment, it was shown that

capacity isO(W
√

prnd
nlogn) and Ω(W

√

f
cnlogn). In this paper, we

show that the capacity for this model is actuallyΘ(W
√

prnd
nlogn).

5. RANDOM (c, f ) ASSIGNMENT
In this section we briefly describe the random(c, f ) assignment

model first introduced in [3, 1], and summarize some already proven
results that will be useful in proving the lower bound on capacity.
In this assignment model, a node is assigned a subset off channels
uniformly at random from the set of all possible channel subsets of
size f . Thus the probability that two nodes share at least one chan-
nel is given byprnd = 1− (1− f

c )(1− f
c−1)...(1− f

c− f+1). The
proofs of the following are available in [1], and also [2]:

LEMMA 1. For c≥ 2 and2≤ f ≤ c, the following holds:

cprnd

f
≤ min{ c

f
,2 f} (1)

LEMMA 2. min{ c
f ,2 f} ≤

√
2c

5.1 Sufficient Condition for Connectivity
It was stated and proved in [3] that, for random(c, f ) assign-

ment, if πr2(n) = 800π logn
prndn , then the network is connected w.h.p.

We summarize the proof idea here, to provide important context
for the results in this paper.

The unit torus is divided into square cells of areaa(n) = 100logn
prndn .

It can be shown that there are at least50logn
prnd

nodes in each cell

w.h.p. r(n) is set to
√

8a(n). Within each cell,2logn
prnd

nodes are
chosen uniformly at random, and set apart astransition facilitators.
At least 48logn

prnd
nodes remain in each cell, and they act asbackbone

candidates.
Consider any node in any given cell. The probability that it

can communicate to any other random node in its range isprnd.
Then the probability that in some adjacent cell, there is no back-
bone candidate node with which it can communicate is less than

(1− prnd)
48logn
prnd ≤ 1

e48logn = 1
n48 . Applying union bounds over all 8

adjacent cells of a node, and alln nodes, the probability that at least
one node is unable to communicate with any backbone candidate
node in at least one of its adjacent cells is at most8

n47 .
Associated with each nodex, there is a set of nodesB(x) called

the backbone forx. B(x) is constituted as follows: Cells already
covered by the backbone are referred to asfilled cells. x is by de-
fault a member ofB(x), and its cell is the firstfilled cell. From each
adjacent cell, amongst all backbone candidate nodes sharing at least
one common channel withx, one is chosen uniformly at random is



added toB(x). Thereafter, from each cell bordering a filled cell,
of all nodes sharing at least one common channel with some node
already inB(x), one is chosen uniformly at random, and is added to
B(x); the cell gets added to the set of filled cells. This process con-
tinues, till all cells are filled. Based on previous arguments,B(x)
eventually covers all cells with probability at least 1− 8

n47 . For any
node-pairx andy, if B(x)∩B(y) 6= φ the two are obviously con-
nected. Suppose the two backbones are disjoint. Thenx andy are
still connected if there exists a cell where the member ofB(x) (let
us call it qx) can communicate with the member ofB(y) in that
cell (let us call itqy), either directly, or through a third nodez. qx
andqy can communicate directly with probability 1 if they share a
common channel. Thus the case to handle is that where no cell has
qx andqy sharing a channel.

If they do not share a common channel, consider the event that
there exists a third node amongst thetransition facilitatorsin the
cell through whom they can communicate. Thus, the overall prob-
ability can be lower-bounded by obtaining for one cell the probabil-
ity of qx andqy communicating via a third nodez, given they have

no common channel, considering that each cell has at least2logn
prnd

possibilities forz, and treating it as independent across cells. This
is elaborated further.

Consider a third nodez amongst the transition facilitators in the
same cell asqx andqy. Consider a situation wherezenumerates its
f channels in some uniformly random order, and then inspects the
first two channels, checking whether the first one is common with
qx, and checking whether the second one is common withqy. This

probability is
(

f
c

)(

f
c−1

)

>
f 2

c2 . Thusqx andqy can communicate

throughz with probability pz >
f 2

c2 = Ω( 1
log2 n

). There are2logn
prnd

possibilities forz within that cell, and all the possiblez nodes have
i.i.d channel assignments. Thus, the probability thatqx andqy can-

not communicate through anyz in the cell is at most(1− pz)
2logn
prnd ,

and the probability they can do so ispxy ≥ 1− (1− pz)
2logn
prnd .

Thereafter application of the union bound over all cells, and all
node pairs suffices to prove the result.

6. SUMMARY OF OUR RESULTS
In the rest of this paper, we describe a construction that achieves

a per-flow throughput ofΩ(W
√

prnd
nlogn) for c = O(logn). In light

of the upper bound ofO(W
√

prnd
nlogn) proved in [3], this establishes

the capacity for random(c, f ) assignment asΘ(W
√

prnd
nlogn) in the

regimec = O(logn). It is easy to see the following:

prnd = 1− (1− f
c
)(1− f

c−1
)...(1− f

c− f +1
)

≥ 1− (1− f
c
) f ≥ 1−e−

f 2

c

(2)

Hence: f = Ω(
√

c) =⇒ prnd = Ω(1). To illustrate, if we set
f =

√
c, prnd ≥ 1− 1

e >
1
2 . In light of Eqn. (2), our result implies

that f = Ω(
√

c) suffices for achieving capacity of the same order as
the unconstrained switching case [9]. Forf =

√
c, the previously

established lower bound ofΩ(W
√

f
cnlogn), would have yielded a

capacity degradation by a factor of the order ofc
1
4 compared to

the unconstrained switching case. In general, one may see that the
capacity may diverge from the previous lower bound whenf

c → 0,
but f → ∞.

Fig. 1 is a numerical plot (obtained by settingc to 104, and vary-
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Figure 1: Comparison of probability of sharing a channel

ing f from 2 toc) depicting how the probabilityprnd compares with
the probabilitypmax

ad j = min{ 2 f−1
c− f+1 ,1}. Recall thatprnd is the prob-

ability that two nodes share at least one channel in random(c, f )
assignment, andpmax

ad j is the upper bound on the probability that two
nodes share at least one channel in adjacent(c, f ) assignment [3]. It
is quite remarkable that though both models allow nodes to switch
between a subset off channels, the additional degrees of freedom
obtained via the random assignment model lead to a much quicker
convergence ofprnd toward 1. The results in [3] established that
connectivity was the dominant constraint determining capacity for
adjacent(c, f ) assignment in thec = O(logn) regime. The lower
bound in this paper for random(c, f ) assignment matches the upper
bound imposed by the connectivity constraint (see [3, 1]). Thus, the
quick convergence ofprnd to 1 leads to a quicker convergence of
capacity towards that attainable via unconstrained switching.

It is to be noted that the lower bound of [3] was obtained using
a much simpler construction than the one described in this paper.
Thus the two constructions represent an interesting trade-off in ca-
pacity versus scheduling/routing complexity.

7. SOME USEFUL RESULTS

THEOREM 1. (Chernoff Upper Tail Bound [10]) Let X1, ...,Xn
be independent Poisson trials, where Pr[Xi = 1] = pi . Let X =
n
∑

i=1
Xi . Then, for0 < β ≤ 1:

Pr[X ≥ (1+β)E[X]] ≤ exp(−β2

3
E[X]) (3)

LEMMA 3. For all 0≤ x≤ 1 : (1−x) ≤ e−x.

LEMMA 4. Suppose we are given a unit torus with n points
(or nodes) located uniformly at random, and the region is sub-
divided into axis-parallel square cells of area a(n) each. If a(n) =
100α(n) logn

n ,1≤α(n)≤ n
100logn , then each cell has at least(100α(n)−

50) logn, and at most(100α(n)+50) logn points (or nodes), with
high probability.

LEMMA 5. Suppose we are given a unit torus with n points
(or nodes) located uniformly at random. Let us consider the set
of all circles of radius R and area A(n) = πR2 on the unit torus.

If A(n) =
100α(n) logn

n ,1≤ α(n) ≤ n
100logn , then each circle has at

least(100α(n)−50) logn, and at most(100α(n)+50) logn points
(or nodes), with high probability.



LEMMA 6. If n pairs of points(Pi ,Qi) are chosen uniformly at
random in the unit area network, the resultant set of straight-line
formed by each pair Li = PiQi satisfies the condition that no cell
has more than n

√

a(n) lines passing through it.

THEOREM 2. (Hall’s Marriage Theorem [8], [11]) Given a set
S , letT = {T1,T2, . . .Tn} be a finite system of subsets ofS . ThenT
possesses a system of distinct representatives if and only if for each
k in 1,2, ..,n, any selection of k of the setsTi will contain between
them at least k elements ofS . Alternatively stated: for allA ⊆ T ,
the following is true:|∪A | ≥ |A |

LEMMA 7. The number of subsets of size k chosen from a set of

m elements is given by
(m

k

)

≤
(me

k

)k.

THEOREM 3. (Integrality Theorem [4]) If the capacity function
of a network flow graph takes on only integral values, then the max-
imum flow x produced by the Ford-Fulkerson method has the prop-
erty that |x| is integer-valued. Moreover, for all vertices u and v,
the value of x(u,v) is an integer.

8. LOWER BOUND ON CAPACITY
A lower bound ofΩ(W

√

f
cnlogn) for capacity with random(c, f )

assignment was proved in [3, 1]. From Lemma 1, it follows that
√

f
cnlogn

√

prnd
nlogn

= Ω( 1√
f
). Thus for f < 100,

√

f
cnlogn

√

prnd
nlogn

= Ω(1), and the con-

struction presented in [3] (details in [1]) is asymptotically optimal.
Thus, we propose to use this construction forf < 100 to achieve
capacity.

We now present a construction that achievesΩ(W
√

prnd
nlogn) when

f ≥ 100 (thus necessarilyc≥ 100).

Traffic-model related results.We first state some results for
the traffic model of [7] (which is also used in this paper). For
proofs, please see [2].

LEMMA 8. The number of flows for which any node is the des-
tination is O(logn) w.h.p.

LEMMA 9. For large n, at least one node is the destination for
Ω(logn) flows with a probability at least1e(1− 1

e)(1− δ), where
δ > 0 is an arbitrarily small constant.

Subdivision of network region into cells.We use a square
cell construction (similar to that used in [6], and subsequently in
[9], [3]). The surface of the unit torus is divided into square cells
of areaa(n) each, and the transmission range is set to

√

8a(n),
thereby ensuring that any node in a given cell is within range of
any other node in any adjoining cell. Since we utilize theProtocol
Model[7], a node C can potentially interfere with an ongoing trans-
mission from node A to node B, only ifBC≤ (1+∆)r(n). Thus, a
transmission in a given cell can only be affected by transmissions
in other cells within a distance(2+∆)r(n) from some point in that
cell. Since∆ is independent ofn, the number of cells that interfere
with a given cell is only some constant (sayβ).

We choosea(n)=
250max{logn,c}

prndn = Θ( logn
prndn) (sincec= O(logn)).

Then the following holds:

LEMMA 10. Each cell has at least4na(n)
5 =

200max{logn,c}
prnd

and

at most6na(n)
5 =

300max{logn,c}
prnd

nodes w.h.p.

PROOF. The proof has been omitted due to space constraints.
Please see [2].

Many of the intermediate results in the rest of this paper assume
that the high-probability event of Lemma 10 holds.

We also state the following facts:

f
c
≤ prnd ≤ 1 (4)

For largen, sincec = O(logn), and 2≤ f ≤ c:

f (n) = O(na(n)) =⇒ f (n) = O(
n
√

a(n)

c
) (5)

f (n) = O(
1

√

a(n)
) =⇒ f (n) = O(

n
√

a(n)

c
) (6)

Some properties ofSD′D routing. Recall that we use the
traffic model of [7], where each sourceS first chooses a pseudo-
destinationD′, and then selects the nodeD nearest to it as the actual
destination. In [7], the routeSD′D was followed, whereby the flow
traversed cells intersected by the straight lineSD′, and then took an
extra last hop if required. In our case, it may not always suffice to
useSD′D routing (we elaborate on this later). However, this is still
an important component of our routing procedure, and so we state
and prove the following lemmas (similar results were stated in [1])
for SD′D routing:

LEMMA 11. Given only straight-line SD′ routing (no additional
last-hop), the number of flows that enter any cell on their i-th hop

is at most⌊ 5na(n)
4 ⌋ w.h.p., for any i.

PROOF. Let us consider the straight-line partSD′ of an SD′D
route. Thus all then SD′ lines are i.i.d. Denote byXk

i the indicator
variable which is 1 if the flowk enters a cellD on itsi-th hop. Then,
as observed in [6] (proof of Lemma 3), for i.i.d. straight lines, the
Xk

i ’s are identically distributed, andXk
i andXl

j are independent for

k 6= l . However for a given flowk, at most one of theXk
i ’s can be

1 as a flow only traverses a cell once. ThenPr[Xk
i = 1] = a(n) =

250max{logn,c}
prndn .

Let Xi =
n
∑

k=1
Xk

i . ThenE[Xi ] = na(n). Also, for a giveni, theXk
i ’s

are independent [6]. Then by application of the Chernoff bound
from Thereom 1 (withβ = 1

4):

Pr[Xi ≥
5E[Xi ]

4
] ≤ exp(−E[Xi ]

48
)

∴ Pr[Xi ≥
1250max{logn,c}

4prnd
]

≤ exp(−250max{logn,c}
48prnd

) <
1
n5

(7)

The maximum value thati can take is 2√
a(n)

=
√

2nprnd
250max{logn,c} <

n. Also the number of cells is 1
a(n)

≤ n. Then by application

of union bound over alli, and all cellsD, the probability that

Xi ≥ 5E[Xi ]
4 is less than1

n3 , and thus the number of flows that en-

ter any cell on any hop is less than5na(n)
4 =

1250max{logn,c}
4prnd

with

probability at least 1− 1
n3 . Resultantly, sinceXi is an integer, we

can say that it is at most⌊ 5na(n)
4 ⌋ w.h.p.



LEMMA 12. The number of flows for which any single node is
the destination is O(na(n)) w.h.p.

PROOF. The proof has been omitted due to space constraints.
Please see [2].

LEMMA 13. If a node is the destination of some flow, then that
flow’s pseudo-destination must lie within either the same cell, or
an adjacent cell w.h.p.

PROOF. The proof has been omitted due to space constraints.
Please see [2].

LEMMA 14. The number of SD′D routes that traverse any cell
is O(n

√

a(n)) w.h.p.

PROOF. The proof for this lemma is largely based on a proof
in [6]. It has been omitted due to space constraints. Please see
[2].

Having stated and proved these lemmas, we now establish some
properties of the spatial distribution of channels, and thereafter de-
scribe our scheduling/routing procedure further:

DEFINITION 1. We define a term Mu where Mu = ⌈ 9 f na(n)
25c ⌉ =

⌈ 90f max{logn,c}
cprnd

⌉.

Then the following holds:

LEMMA 15. If there are at least200max{logn,c}
prnd

nodes in every

cell, of which we choose180max{logn,c}
prnd

nodes uniformly at ran-
dom ascandidatesto examine, then, in each cell, amongst those
180max{logn,c}

prnd
candidatenodes, at least c−⌊ f

4⌋ channels have at
least Mu nodes capable of switching on them, w.h.p.

PROOF. The proof has been omitted due to space constraints.
Please see [2].

Similar to the construction for connectivity from [3] that we
briefly summarized in Section 5.1, we will construct a backbone for
each node.However, since our concern is not merely connectivity
but also capacity, these backbones need to be constructed carefully,
to ensure that no bottlenecks are formed.

Conditioning on Lemma 10, there are at least200max{logn,c}
prnd

nodes

in each cell w.h.p. Initially, from each cell, we choose180max{logn,c}
prnd

nodes uniformly at random asbackbone candidates. The remain-

ing nodes (which are at least20max{logn,c}
prnd

in number) are deemed
transition facilitators.

DEFINITION 2. (Proper Channel)A channel i is deemedproper
in cellD if it occurs in at least Mu backbone candidate nodes inD.

LEMMA 16. For each cell of the network, the following is true
w.h.p.: if the number ofproperchannels in the cell is c′, then c′ ≥
c−⌊ f

4⌋ ≥ c−⌊ c
4⌋ ≥ ⌈ 3c

4 ⌉ ≥ 3c
4 .

PROOF. The proof follows from Lemma 10 and Lemma 15.

Besides, we can also show the following:

LEMMA 17. 1 Consider any cellD. LetWi be the set of all
nodes in the 8 adjacent cellsD(k),1≤ k ≤ 8, that are capable of
switching on channel i.
1This can be viewed as a special variant of the Coupon Collector’s
problem [10], where there arec different types of coupons, and
each box has a random subset off different coupons. Some other
somewhat different variants having multiple coupons per box have
been considered in work on coding, e.g., [5].

For a set of nodesB , defineC (B) = { j| j proper inD and∃u∈
B capable of switching on j}. If f ≥100, the following holds w.h.p.:

∀ channels i,∀B ⊆Wi such that|B| = ⌈ f na(n)

4c
⌉ : |C (B)| ≥ ⌈3c

8
⌉

This is true for all cellsD.

PROOF. The proof has been omitted due to space constraints.
Please see [2].

8.1 Routing and channel assignment

Partial Backbones.As mentioned earlier, the routing strategy
is based on a per-node backbone structure similar to that used to
prove the sufficient condition for connectivity in [3]. However,in-
stead of constructing a full backbone for each node, only a partial
backboneBp(x) is constructed for each node x. Bp(x) only covers
those cells which are traversed by flows for whichx is either source
or destination. A flow first proceeds along the route on the source
backbone and will then attempt to switch onto the destination back-
bone.

We shall explain the backbone construction procedure in detail
later. First we show how a flow can be routed along these back-
bones from its source to its destination.

LEMMA 18. Suppose a flow has source x and destination y.
Thus it is initially onBp(x) and finally needs to be onBp(y). Then

after having traversedc
2

f 2 distinct cells (hops) (recall that2≤ f ≤ c

and c= O(logn)) , it will have found an opportunity to make the
transition w.h.p. If the routes of each of the n flows get to traverse at
least c2

f 2 distinct cells (note that each individual route needs to tra-
verse at least so many distinct cells; two different flows may have
common cells on their respective routes), then all n flows are able
to transition w.h.p.

PROOF. Consider a flow traversing a sequence of cellsD1,D2, ....
Then if the representative ofBp(x) (let us call itqx) in Di can com-
municate (directly or indirectly) with the representative ofBp(y)
(let us call itqy) in Di , it is possible to switch fromBp(x) toBp(y).
If qx andqy share a channel this is trivial. Ifqx andqy do not share
a channel, we consider the probability that the two can communi-
cate via a third node from amongst thetransition facilitatorsin Di ,
i.e. there exists a transition facilitatorz such thatz shares at least
one channel withqx and one channel withqy. In Section 5.1, we
summarized a proof from [3] showing thatqx andqy can communi-

cate through a givenz with probability pz >
f 2

c2 = Ω( 1
log2 n

). Given

our choice of cell areaa(n), and conditioned on the fact that each

cell has200max{logn,c}
prnd

nodes (Lemma 10), of which180max{logn,c}
prnd

are deemedbackbone candidatesand the rest aretransition facil-

itators, there are at least 20max{logn,c}
prnd

≥ 20logn
prnd

possibilities forz
within that cell. All the possibleznodes have i.i.d. channel assign-
ments. Thus, the probability thatqx andqy cannot communicate

through anyz in the cell is at most(1− pz)
20logn
prnd , and the probabil-

ity they communicate through somez is pxy ≥ 1− (1− pz)
20logn
prnd .

Hence, the probability that this happens in none of thec2

f 2 distinct

cells is at most(1− pxy)
c2

f 2 ≤ (1− pz)
20c2 logn
f 2prnd < (1− f 2

c2 )
20c2 logn
f 2prnd ≤

e
− 20logn

prnd ≤ 1
n20 (from Lemma 3). Applying the union bound over all

n flows, the probability that all flows are able to transition is at least
1− 1

n19 .
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Figure 2: Illustration of detour routing

Hence, we require each route to have at leastc2

f 2 distinct hops
(note that this is not a tight bound on the minimum number of
required hops). Resultantly, we cannot stipulate thatall flows be
routed along the (almost) straight-line pathSD′D. If SD′D is short,
a detour may be required to ensure the minimum route-length, akin
to detour-routing in the constructions of [3]. Such flows are said to
bedetour-routed.

Flow Transition Strategy.As per our strategy, a non-detour-
routed flow is initially in aprogress-on-source-backbonemode, and
keeps to the source backbone till there are onlyc2

f 2 distinct interme-
diate cells left to the destination. At this point, it enters aready-for-
transitionmode, and actively seeks opportunities to make a transi-
tion to the destination backbone along the remaining hops. Once it
has made the transition into the destination backbone, it proceeds
towards the destination on that backbone along the remaining part
of the route, and is thus guaranteed to reach the destination.

Thus, we stipulate that the (almost) straight-lineSD′D path be
followed if the straight-line route comprisesh ≥ c2

f 2 distinct inter-

mediate cells (hops). IfS andD′ (hence alsoD) lie close to each
other, the hop-length of the straight line cell-to-cell path can be
much smaller. In this case, adetourpathSPD′D is chosen (Fig.
2), using a circle of radiusc

2

f 2 r(n) in a manner similar to that in
the constructions described in [3, 1] (consider a circle of this radius
centered aroundS, choose a pointP on the circle, and follow the
routeSPD′D).

A detour-routed flow is always inready-for-transitionmode.
The need to performdetourrouting for some source-destination

pairs does not have any substantial effect on the average hop-length
of routes or the relaying load on a cell, as we show further.

LEMMA 19. If the number of flows in any cell is x in case of

pure straight-line routing, it is at most x+ O(
nc4r2(n)

f 4 ) =⇒ x+

O(log6n) w.h.p. in case of detour routing.

PROOF. The proof has been omitted due to space constraints.
Please see [2].

LEMMA 20. The number of flows traversing any cell is O(n
√

a(n))
w.h.p. even with detour routing.

PROOF. The proof has been omitted due to space constraints.
Please see [2].

LEMMA 21. The number of flows traversing any cell inready-
for-transitionmode is O(log6n) w.h.p.

PROOF. The proof has been omitted due to space constraints.
Please see [2].
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prev. hop for at most 14 entering

backbone links

backbones in step k

Figure 3: Cell D and neighboring cells during backbone con-
struction

Backbone Construction.The backbone construction proce-
dure is required to take load-balancing into account. Thus we can
describe the procedure for constructing the backboneBp(x) of x as
follows:

Given a cellD, the 8 cells adjacent to cellD are denoted as
D( j),1 ≤ j ≤ 8 (Fig. 3). Bp(x) is constituted as follows. Let
S ∪Db be the subset of cells that must be covered byBp(x) where
S comprises cells traversed by the flow for whichx is the source,
andDb comprises the cells traversed by flows for which it may be
the destination.x is by default a member ofBp(x).

We consider backbone construction for the route from each source
to its pseudo-destination below. Some routes require an additional
last hop to reach the actual destination node. However, from Lemma
13, the only such last hop routes that may enter a cell correspond to
pseudo-destinations in the 8 adjacent cells. Then applying Lemma
4 to the set of pseudo-destinations, they are onlyO(na(n)) such
pseudo-destinations, and thus onlyO(na(n)) such last-hop flows
entering the cell. Hence we can account for them separately.

Expanding backbones toS .
We first cover cells inS . Recall that we are only constructing the

SD′ part and not considering the possible additional last hop at this
stage.

This has two sub-stages. In the first stage, we construct back-
bones for source nodes whose flow does not require a detour. In the
second sub-stage we construct backbones for source nodes whose
flow requires a detour.

Straight-line backbones:
This step proceeds in a hop-by-hop manner for all non-detour-

routed flows in parallel (each of which has a unique sourcex).
Any cell of S in which there is already a node assigned toBp(x)

is called a filled cell. Thus initiallyx’s cell is filled. We then con-
sider the cell inS that is traversed next by the flow. We consider
all nodes in that cell sharing one or more common channel withx.
This provides a number of alternative channels on which the flow
can enter that cell.

Let hmax be the maximum hop-length of any non-detour-routed
SD′ route. Thenhmax = O( 1√

a(n)
) and the procedure hashmax

steps. In stepk, for each source nodex whose flow hask or more
hops,Bp(x) expands into the cell entered byx’s flow on thek-th
hop. Each cellD performs the following procedure:

The backbones are extended by constructing bipartite graphs that
aid load-balance.



LEMMA 22. If f ≥ 100, then it is possible to devise a backbone
construction procedure, such that, after step hmax of the backbone
construction procedure forS (for non-detour-routed flows), each

cell has O(
n
√

a(n)
c ) incoming backbone links on a single channel,

and each node appears on O(
n
√

a(n)
c ) (source) backbones, w.h.p.

PROOF. This proof assumes that the high probability events in
Lemma 10, Lemma 11, Lemma 16, and Lemma 17 occur.

We present an inductive argument. Recall that we are expand-
ing backbones to cover cells inS . At each step of the (inductive)
construction, we first have a channel-allocation phase, followed by
a node-allocation phase. We prove that after stepk of the back-
bone construction procedure, the following two invariants hold for
all cells of the network:

• Invariant 1: Each node is assigned at most 14 new incoming
backbone links during stepk. Thus after stepk, it appears in
a total ofO(14k) =⇒ O(k) backbones.

• Invariant 2: No more than⌊ 5na(n)
c ⌋ new backbone links en-

ter the cell on a single channel during stepk. Thus, in to-

tal O(
kna(n)

c ) incoming backbones (entering the cell) are as-
signed (incoming links) on a single channel after stepk.

If the above two Invariants hold, then it is easy to see that after

hmax steps, cellD will have no more than5hmaxna(n)
c = O(

n
√

a(n)
c )

backbone links assigned to any single channel, and no node occurs

on more than 14hmax =⇒ O( 1√
a(n)

) =⇒ O(
n
√

a(n)
c ) backbones

(from Eqn. (6)).
We prove that the Invariants hold, by induction, as follows:
If Invariant 1 holds at the end of step k−1, then Invariant 2

continues to hold after the channel-allocation phase of stepk.
If Invariant 2 holds after the channel-allocation phase of stepk,
then Invariant 1 will continue to hold after the node-allocation
phase of stepk, and thus both Invariants 1 and 2 will hold at
the end of stepk.

Base Case:
Before the procedure begins, at step 0, each node is assigned to

its own backbone, for which it is effectively the origin (and this can
be viewed as a single backbone link incoming to this node from
an imaginary super-source). Thus after Step 0, Invariant 1 holds
trivially, and Invariant 2 is irrelevant, and thus trivially true.

Inductive Step:
Suppose Invariants 1 and 2 held at the end of stepk−1. Consider

a particular cellD during stepk.
Let the number ofproperchannels inD bec′. From Lemma 16,

we know thatc′ ≥ c−⌊ f
4⌋ ≥ 3c

4 for each cell. Each flow that enters
cell D in stepk has a previous hop-node in one of the 8 adjacent
cells. Also note that, from Lemma 16, each previous hop node has
at least⌈ 3 f

4 ⌉ of cellD ’s properchannels available to it as choices

(since it can switch onf channels of which at most⌊ f
4⌋ may be

non-proper in cellD).

Channel-Allocation.Construct a bipartite graph with two sets
of vertices (Fig. 4); one set (call itL) has a vertex corresponding to
each of the (source) backbones that enter the cellD in stepk. From

Lemma 11, it proceeds that|L | ≤ ⌊ 5na(n)
4 ⌋. The other set (call itP )

has⌊ 5na(n)
c ⌋ ≤ 5na(n)

c vertices for each proper channeli in cellD,

i.e., |P | = c′⌊ 5na(n)
c ⌋.
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Set L

Set V ⊆ L

Channel i1

Channel i2

Set N (V)

Channel ic′−1

Channel ic′

vertices

vertices

One vertex for each

Channel i3

vertices

vertices

vertices

backbone entering

cell D in step k

Set P
⌊5na(n)

c
⌋ vertices

for each proper channel

Figure 4: Bipartite Graph for Cell D in stepk

A backbone vertex is connected to all the vertices for the chan-
nels proper inD on which its previous hop node can switch (and
which are therefore valid channel choices for entering the cellD).
We show that there exists a matching that pairs each backbone ver-
tex to a unique channel vertex, through an argument based on Hall’s
marriage theorem (Theorem 2). Thus, we seek to show that for
all V ⊆ L , |N (V )| ≥ |V |, whereN (V ) ⊆ P is the union of the
neighbor-sets of all vertices inV .

We first note the following:

⌈3 f
4
⌉⌊5na(n)

c
⌋ ≥ 3 f

4

(

5na(n)

c
−1

)

=
15f na(n)

4c
− 3 f

4

≥ 15f na(n)

4c
− 3 f na(n)

1000c
≥ 29f na(n)

8c
(∵ na(n) ≥ 250c)

(8)

Consider the following two cases:

Case 1: |V | <
29f na(n)

8c . Consider any setV of backbone ver-

tices such that|V | < 29f na(n)
8c . Then, since there are at most⌊ f

4⌋
non-proper channels in a cell, every previous hop node has at least
⌈ 3 f

4 ⌉ ≥ 3 f
4 properchannel choices. For each proper channel there

are ⌊ 5na(n)
c ⌋ ≥ 5na(n)

c − 1 associated channel vertices. Thus we

obtain that|N (V )| ≥ 3 f
4

(

5na(n)
c −1

)

≥ 29f na(n)
8c (from Eqn. 8).

Thus|N (V )| ≥ |V |.

Case 2: |V | ≥ 29f na(n)
8c . Now consider setsV of size at least

29f na(n)
8c . Note that since Invariant 1 held till end of stepk−1, no

more than 14 backbone links were assigned to any single node in
8∪

k=1
D(k) in stepk−1.

Intuitively, in order to show that|N (V )| ≥ |V | for all suchV ,
we first state and prove the observation that if a channel overload
condition occurs, resulting in|N (V )| < |V | for someV , then the



overload must also manifest itself in somechannel-alignedsubset
(i.e. a subset where all flows have somecommonproper channeli
available to them). Thus, to show that no overload condition occurs,
it suffices to show that no overload condition occurs in any of these
critical channel-aligned subsets, which can be shown using Lemma
17. The argument is formalized as follows:

LetVi be the set comprising all setsUi ⊆ L , such that all back-
bone vertices inUi have channeli associated with them (i.e., all
backbone vertices inUi havei available to them as a valid proper
channel choice for enteringD).

Claim (a). ∀U ∈ S

i proper inD
Vi :

|U| ≥ ⌈29f na(n)

8c
⌉ =⇒ |N (U)| ≥ |L |

Proof of Claim (a): We know thatU ∈ Vi for somei that is
proper inD. Also, since no node can be the previous hop in step
k of more flows than those assigned to it in stepk−1, and Invari-
ant 1 held after stepk− 1, it proceeds that no previous hop node
is common to more than 14 entering backbone links. LetA be the
set of distinct previous hop nodes associated withU. Then|A | ≥
1
14|U| ≥ 1

14(
29f na(n)

8c ) ≥ f na(n)
4c +

f na(n)
112c >

f na(n)
4c + 1 ≥ ⌈ f na(n)

4c ⌉
(note that f na(n)

c ≥ 250f ≥ 500> 112). Observe thatA thus con-

tains at least one subsetB satisfying|B| = ⌈ f na(n)
4c ⌉. Recognizing

that all members ofA , and hence all members ofB , are capable
of switching on channeli, we can invoke Lemma 17 onB , to ob-
tain that whenf ≥ 100, |C (B)| ≥ ⌈ 3c

8 ⌉. This yields: N (U) ≥
|C (B)|⌊ 5na(n)

c ⌋≥ |C (B)|
(

5na(n)
c −1

)

≥⌈ 3c
8 ⌉

(

5na(n)
c −1

)

≥ 15na(n)
8 −

⌈ 3c
8 ⌉ ≥ 15na(n)

8 − 3
8

(

na(n)
250

)

−1≥ 5na(n)
4 ≥ |L |.

Claim (b). Consider a setV ⊆ L . Then:

|N (V )| < |V | =⇒ ∃i proper inD,Si ⊆ V s.t. :

Si ∈ Vi and|Si | ≥ ⌈29f na(n)

8c
⌉

(9)

Proof of Claim (b): Suppose|N (V )| < |V |. Let us denote by
Si ⊆ V the set of all backbone vertices inV that are associated
with channeli (i.e., have channeli available as a valid proper chan-
nel choice for entering cellD). Consider the bipartite sub-graph
GV induced byV ∪N (V ), and assign all edges unit capacity.
Construct the graphGV ∪{s, t} where s is a source node having
a unit capacity edge to all verticesv ∈ V , and t is a sink node,
connected to each vertexu∈ N (V ) via a unit capacity edge. We
try to obtain a(s, t) flow g such that all edges(s,v) are saturated.
Each vertexv ∈ V sub-divides the unit of flow received froms
equally amongst all edges(v,u) outgoing from it. Since each ver-
tex has edges to vertices of at least3 f

4 channels, this yields at least
3 f
4

(

5na(n)
c −1

)

≥ 29f na(n)
8c edges (see Eqn. 8). Thus eachv ∈ V

contributes at most 8c
29f na(n)

units of flow to a vertexu ∈ N (V ),

i.e.,g(v,u) ≤ 8c
29f na(n)

. Hence no vertexu∈N (V ) gets more than

h(u) = ∑
v∈Si

g(v,u) =
8c|Si |

29f na(n)
units of flow, wherei is the channel

corresponding to vertexu. Resultantly, if|Si | ≤ ⌊ 29f na(n)
8c ⌋ for all

channelsi that are proper in cellD, this implies thath(u) ≤ 1, and
settingg(u, t) = h(u) yields the desired(s, t) flow. Henceg is a
valid flow that allows a unit of flow to pass through each vertex

v∈ V . From the Integrality Theorem (Theorem 3), we can obtain
an integer-capacity flow that yields a matching of size|V |. Thus,
from Hall’s marriage theorem (Theorem 2),|N (V )| ≥ |V | (else a
matching of size|V | could not have existed). This yields a contra-
diction. Thus there must exist a proper channeli, andSi ⊆ V such

thatSi ∈ Vi and|Si | > ⌊ 29f na(n)
8c ⌋. Since set-cardinality must nec-

essarily be an integer, it proceeds that|Si | ≥ ⌈ 29f na(n)
8c ⌉, and Eqn.

(9) holds.

Claim (c). ∀V ⊆ L such that|V | ≥ 29f na(n)
8c : |N (V )| ≥ |V |

Proof of Claim (c): Suppose|N (V )| < |V | for some suchV .
Then, from Claim (b), there exists a setSi ⊆ V such thatSi ∈ Vi ,
and|Si | ≥ ⌈ 29f na(n)

8c ⌉. ThusSi qualifies as a set to which Claim (a)
applies. Invoking Claim (a) on this setSi , it follows that|N (V )| ≥
|N (Si)| ≥ |L | ≥ |V |. This yields a contradiction. Hence:|N (V )| ≥
|V |.

Therefore, by application of Hall’s marriage theorem (Theorem
2), each backbone vertex can be matched with a unique channel
vertex, and the corresponding backbone will be assigned to the
channel with which this vertex is associated. Thus all backbones
get assigned a channel, and (since there are at most⌊ 5na(n)

c ⌋ chan-

nel vertices for each proper channel) no more than⌊ 5na(n)
c ⌋ incom-

ing backbone links are assigned to any single channel.
While Hall’s marriage theorem proves that such a matching ex-

ists, the matching itself can be computed using the Ford-Fulkerson
method [4] on a flow network obtained from the bipartite graph by
adding a source with an edge to each vertex inL , a sink to which
each vertex inP has an edge, and assigning unit capacity to all
edges.

Thus Invariant 2 continues to hold after the channel-allocation
phase of stepk.

Node-Allocation.Having determined the channel each back-
bone should use to enter cellD, we need to assign a node in cell
D to each backbone. For this, we again construct a bipartite graph.
In this graph, the first set of vertices (call itF ) comprise a vertex
for each backbone entering cellD in stepk. The second set (call it
R ) comprises 14 vertices for eachbackbone candidatenode in cell
D. A vertexx in F has an edge with a vertexy in R iff the actual
backbone candidatenode associated withy is capable of switching
on the channel assigned to the backbone associated with vertexx in
the preceding channel-allocation phase.

Each vertexx∈ F has degree at least 14Mu, since it is assigned
to aproperchannel, which by definition has at leastMu representa-
tives in cellD, each of which has 14 associated vertices inR . Also
recall thatMu = ⌈ 9 f na(n)

25c ⌉. Once again we seek to show that for all
V ⊆ F , |N (V )| ≥ |V |.

Consider any setV ∈ F .

Since no channel is assigned more than⌊ 5na(n)
c ⌋ entering back-

bone links in this step, the vertices inV are cumulatively associ-

ated with at leastm≥ |V |
⌊ 5na(n)

c ⌋
distinct proper channels. Since each

of these channels have at leastMu backbone candidatenodes capa-
ble of switching on them, and any one node can only switch on up
to f proper channels, this implies that the number of nodes in cell

D cumulatively associated with thesem≥ |V |
⌊ 5na(n)

c ⌋
proper channels

is at least |V |Mu

f ⌊ 5na(n)
c ⌋

≥ |V |⌈ 9 f na(n)
25c ⌉

5 f na(n)
c

≥ 9|V |
125 , and as each node has 14

vertices, it follows that|N (V )| ≥ 14
(

9|V |
125

)

≥ 126|V |
125 > |V |.



Then invoking Hall’s Marriage Theorem again, each vertexx ∈
F can be matched with a unique vertexy∈ R , and the actual net-
work node associated withy is deemed the backbone representative
for the backbone corresponding to vertexx in cell D (the match-
ing can again be computed via the Ford-Fulkerson method). Since
there are at most 14 vertices associated with a node, no node is
assigned more than 14 incoming backbone links in stepk, and In-
variant 1 continues to hold after the node-allocation phase of step
k.

Thus we have shown that both Invariants 1 and 2 continue to hold
after stepk.

Hence after stephmax (wherehmax≤ 2√
a(n)

), each cellD has

O(
hmaxna(n)

c ) =⇒ O(
n
√

a(n)
c ) entering backbone links per channel,

and each node appears onO(hmax) = O( 1√
a(n)

) =⇒ O(
n
√

a(n)
c )

(from Eqn. (6)) source backbones.

Detour backbones:From Lemma 19 the number of additional
flows traversing a cell due to detour routing is onlyO(log6 n), and
each such flow will at most traverse the cell twice. Thus detour
flows do not pose any significant load-balancing issue at any cell,
and we can grow the backbones inS for these flows in any man-
ner possible, i.e. by assigning links to any eligible node/channel
(at least one eligible node is guaranteed to exist since, as a conse-
quence of Lemma 16, each node can switch on at least⌈ 3 f

4 ⌉ chan-
nels that are proper in the next cell).

Additional last hop:We now account for the possible additional
last hop that some flows may have, yielding an additional cell inS
(in addition to those traversed from source to pseudo-destination).

We already argued that at mostO(na(n)) =⇒ O(
n
√

a(n)
c ) flows

(from Eqn. (5)) enter any cell on their additional last hop. Thus,
even if their backbone links are assigned to the same channel/node,

we would still haveO(
n
√

a(n)
c ) flows per node and channel in any

cell for theS stage.

Expanding backbone toDb−S .
In this stageBp(x) expands into the cells traversed by flows for

which x is the destination. Note that by our routing strategy a flow
will only attempt to switch to the destination backbone when it en-
tersready-for-transitionmode. From Lemma 21, the total number
of flows traversing a cell inready-for-transitionmode isO(log6 n)
(counting possible repeat traversals), which is much smaller than

O(
n
√

a(n)
c ). Thus flows on their destination backbone do not pose

any major load-balance issues, and the backbones can be expanded
into cells ofDb−S by assigning links to any eligible node/channel.

8.2 Proving load-balance within a cell
We now show that no channel or interface bottlenecks form in

the network when our described construction is used.

Per-Channel Load

LEMMA 23. The number of flows that enter any cell on any

single channel is O(
n
√

a(n)
c ) w.h.p.

PROOF. A flow on routeD1,D2, ...,D j−1,D j .... may enter a
cell D j on a channeli if (1) the flow is in progress-on-source-
backbonemode, or it is inready-for-transitionmode, but is yet to
find a transition into the destination backbone , andi is the shared
channel between the source backbone nodes inD j−1 andD j , or (2)
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qx

qy

z

Figure 5: Two additional transition links for a flow lying wholly
within the cell

the flow has already made a transition, andi is the shared channel
between the destination backbone nodes inD j−1 andD j

We first consider the flows that enter a cell inprogress-on-source-
backbonemode, i.e., are proceeding on their source backbones. Re-
call that these are all non-detour-routed flows, since detour-routed
flows are always inready-for-transitionmode. Then the number

of such flows that enter any cell on a single channel isO(
n
√

a(n)
c )

from Lemma 22.
We now need to account for the fact that some of these flows

may be in theready-for-transitionmode. From Lemma 21 there
areO(log6 n) flows traversing any cell inready-for-transitionmode
w.h.p. (recall that these include the detour-routed flows with their
repeat traversals counted separately, and the possible additional last
D′D hop). Thus regardless of whether they are still on their source
backbone, or have already made the transition to their destination
backbone, no channel can have more thanO(log6 n) such flows en-
tering the cell.

Hence the number of flows entering on a single channel isO(
n
√

a(n)
c )+

O(log6 n) =⇒ O(
n
√

a(n)
c ) w.h.p. for each cell of the network.

LEMMA 24. The number of flows that leave any cell on any

single channel is O(
n
√

a(n)
c ) w.h.p.

PROOF. Note that the flows that leave the cell, must then enter
one of the 8 adjacent cells on that channel (as the corresponding
backbone link for a flow leaves the current cell, and enters an adja-
cent cell). Thus, flows leaving the cell on a channel can be no more
than 8 times the maximum number of flows entering a cell on any

one channel, which has been established asO(
n
√

a(n)
c ) in Lemma

23. Hence, the total number of flows leaving any cell on a single

channel is alsoO(
n
√

a(n)
c ) w.h.p.

LEMMA 25. The number of additional transition links sched-
uled on any single channel within any cell is O(log6n) w.h.p.

PROOF. Recall the transition strategy outlined in the proof of
Lemma 18, whereby the flow locates a cell along the route where
the source backbone nodeqx, and destination backbone nodeqy are
connected through a third nodez. This yields two additional links
qx → z, andz→ qy that lie entirely within the cell (Fig. 5). Note
that the number of flows performing this transition in the cell can be
no more than the number of flows traversing the cell inready-for-
transition mode. From Lemma 21 there areO(log6 n) such flows
traversing any cell w.h.p. In the worst case, we can count 2 addi-
tional links for each such flow as being all assigned to one channel.
The result proceeds from this observation.

Per-Node Load

LEMMA 26. The number of flows that are assigned to any sin-

gle node in any cell is O(
n
√

a(n)
c ) w.h.p.



PROOF. A node is always assigned the single flow for which it
is the source. A node is also assigned flows for which it is the desti-
nation, and from Lemma 8 there are at mostD(n) = O(logn) such
flows for any node w.h.p. Besides, a node may be assigned flows
that are in theready-to-transitionmode, for which it facilitates a
transition (if it is atransition facilitatornode), or on whose desti-
nation backbone it figures. There areO(log6n) such transitioning
flows in a cell w.h.p. from Lemma 21. Thus a node can only have
O(log6n) such flows assigned.

We now consider the flows inprogress-on-source-backbonemode
that do not originate in the cell. These nodes are on their source-

backbone, and from Lemma 22, each node has at mostO(
n
√

a(n)
c )

such flows assigned. Thus, the resultant number of assigned flows

per node is 1+D(n)+O(log6 n)+O(
n
√

a(n)
c ) =⇒ O(

n
√

a(n)
c ).

8.3 Transmission schedule
As mentioned earlier, from the Protocol Model assumption, each

cell can face interference from at most a constant numberβ of
nearby cells. Thus, if we consider the resultant cell-interference
graph (a graph with a vertex for each cell, and an edge between two
vertices if the corresponding cells can interfere with each other), it
has a chromatic number at most 1+ β. Hence, we can come up
with a global schedule having 1+ β unit time slots in each round.
In any slot, if a cell is active, then all interfering cells are inactive.
The next issue is that of intra-cell scheduling. We need to sched-
ule transmissions so as to ensure that at any time instant, there is at
most one transmission on any given channel in the cell. Besides, we
also need to ensure that no node is expected to transmit or receive
more than one packet at any time instant.

We construct a conflict graph based on the nodes in the active
cell, and its adjacent cells (note that the hop-sender of each flow
shall lie in the active cell, and the hop-receiver shall lie in one of
the adjacent cells, except for transition links, for which both lie in
the active cell) as follows: we create a separate vertex for each flow
for which a node in the cell needs to transmit data (we count repeat
traversals or additional transition links as distinct flows for the pur-
pose of scheduling; these have been accounted for while bounding
the number of flows in a cell in previous lemmas). Since the flow
has an assigned channel on which it operates in that particular hop,
each vertex in the graph has an implicit associated channel. Be-
sides, each vertex has an associated pair of nodes corresponding to
the hop endpoints. Two vertices are connected by an edge if (1)
they have the same associated channel, or (2) at least one of their
associated nodes is the same. The scheduling problem thus reduces
to obtaining a vertex-coloring of this graph. If we have a vertex col-
oring, then it ensures that (1) a node is never simultaneously send-
ing/receiving for more than one flow (2) no two flows on the same
channel are active simultaneously. Thus, the number of neighbors
of a graph vertex is upper bounded by the number of flows requir-
ing a transmission in the active cell on that channel, and the number
of flows assigned to the flow’s two hop endpoints (both hop-sender
and hop-receiver). It can be seen from Lemma 23, Lemma 24,
Lemma 25 and Lemma 26 that the degree of the conflict graph is

O(
n
√

a(n)
c )+ O(

n
√

a(n)
c )+ O(log6 n)+ O(

n
√

a(n)
c )+ O(

n
√

a(n)
c ) =

O(
n
√

a(n)
c ) (note thatO(log6 n) =⇒ O(

n
√

a(n)
c ), since

n
√

a(n)
c =

Ω(
√

n
logn)). Thus the graph can be colored inO(

n
√

a(n)
c ) colors.

Hence, the cell-slot (which can be assumed to be of unit time) is

divided intoO(
n
√

a(n)
c ) = O(

√

nlogn
prnd
c ) equal length subslots, and all

traversing flows get a slot for transmission. This implies that each

flow gets aΩ(c
√

prnd
nlogn) fraction of the time. Moreover, each cell

gets at least one slot in 1+β slots, whereβ is a constant, and each
channel has bandwidthWc . Thus each flow gets a throughput of at

least
(

1
1+β

)

(W
c

)

Ω(c
√

prnd
nlogn) = Ω(W

√

prnd
nlogn).

We thus obtain the following theorem:

THEOREM 4. When c= O(logn), and2≤ f ≤ c, the per-flow

network capacity with random(c, f ) assignment isΘ(W
√

prnd
nlogn).

9. CONCLUSION
We have established the capacity of a random network with ran-

dom (c, f ) assignment, forc = O(logn), 2 ≤ f ≤ c. Our result

indicates that capacity isΘ(W
√

prnd
nlogn). Thus, whenf = Ω(

√
c),

one can achieve capacity of the same asymptotic order as with un-
constrained switching. There still remain some interesting open
questions pertaining to the random(c, f ) model, in terms of what
is achievable via strictly asynchronous routing/scheduling. How-
ever, the results in this paper, along with prior results in [3], have
been able to demonstrate that it may be possible to achieve good
throughput characteristics even when devices are subject to switch-
ing constraints. Designing practically feasible and efficient proto-
cols for networks of devices with constrained switching ability is
still an open and interesting problem domain.
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