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ABSTRACT Keywords

With the availability of multiple unlicensed spectral bands, and Wireless Networks, Capacity, Multiple Channels, Switching Con-
potential cost-based limitations on the capabilities of individual straints, Randon{c, f) Assignment

nodes, it is increasingly relevant to study the performance of multi-

channel wireless networks with channel switching constraints. To

this effect, some constraint models have been recently proposed,l- INTRODUCTION

and connectivity and capacity results have been formulated for net-  There has been much recent interest in exploiting the availability
works of randomly deployed single-interface nodes subject to these of multiple channels in wireless networks. The transport capacity

constraints. One of these constraint models is termed rafdoin of such networks has also been studied under various assumptions
assignment, wherein each node is pre-assigned a random subsesn availability/capability of radio-interfaces.

of f channels out o€ (each having bandwidt?@l), and may only It was shown in [7] that for a single-channel single-interface sce-
switch on these. Previous results for this model established boundsnario, in a randomly deployed network, per-flow capacity scales
on network capacity, and proved that wher- O(logn), the per- as O( nV\(’) ~) bits/s under a Protocol Model of interference, and
flow capacity isO(W ﬁ',’%’n) and Q(W mgﬁ) (wherepyng = that if the available bandwid¥V is split intoc channels, with each

; f ; (2 . node having a dedicated interface per channel, the results remain
1-(1- )= g=1)-- (1= g=F51) = 1—€ ©). In this paper we the same.

present a lower bound construction that matches the previous upper While many existing standards, e.g., IEEE 802.11a, 802.11b,
bound. This establishes the capacityxsv /n’l)é"gdn)- The surpris- 802.15.4 allow for multiple channe!s, nodes are t_yp_ically hardwarg-

ina imolicati fthi Itis that whef q ¢ constrained and have much fewer interfaces. This issue was studied
Ing Imp |cat|or_1 ofthis resu tis that wheh=Q(/c), ran Qm(Q ) . in [9], under a model where nodes were capable of switching their
assignment yields capacity of the same order as attainable via un'interface(s) to any channel. It was shown that gigeavailable
constrained switching. The routing/scheduling procedure used by .pannels of bandwidt%ﬁ each, and ¥ m< c interfaces per node

us to achieve capacity requires synchronized route-construction forcapacity depends solely on ’the ra?%) For a random network’

all flows in the network, leading to the open question of whetherit ,,q the protocol Model, three capacity regions were established.
is possible to achieve capacity using asynchronous procedures. Most relevant to our work is the regioﬁ — O(logn), where they

showed that capacity is the same asfot c, i.e.,e(in\’\(’)gn) bits/s
Categories and Subject Descriptors per-flow. |

In [3], a case was made for the need to study the performance of
multi-channel networks in situations where there are constraints on
channel switching. This study was motivated on the basis of future
low-cost transceiver designs involving limited tunability, as well as

C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design-Wireless communication

General Terms cognitive radlo networks. As more spectrum bec_:omes freely avrful-
able for unlicensed use, cost concerns are very likely to lead to situ-
Performance, Theory ations where individual nodes can operate only over a much smaller

spectral range, and may possess heterogeneous capabilities. Thus
*This research is supported in part by NSF grant CNS 06-27074, itis quite relevant to study the impact of switching constraints, and
US Army Research Office grant W911NF-05-1-0246, and a Voda- attempt to quantify it.
fone Graduate Fellowship. Some constraint models were proposed in [3] to capture some
expected constraints, and two such models were analyzed, viz., ad-
jacent(c, f) assignment and randofu, f) assignment. The impact
of restricted switching was quantified by the paramétéwhere f
Permission to make digital or hard copies of all or part of thizrkvfor is the number of channels an individual node may switch to). Re-

personal or classroom use is granted without fee providatidbpies are sults were presented for the regime: O(logn). It was established
not made or distributed for profit or commercial advantage aatichpies - f . .
bear this notice and the full citation on the first page. Toyooiherwise, to that per-flow capacity i©(W/ zrgr) for adjacent(c, f) assign-
republish, to post on servers or to redistribute to listquires prior specific
permission and/or a fee.
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ment. For randon(c, f) assignment, an upper bound@fW n‘l’(’,"gn)



In this paper, we establish that the per-flow capacity with random [9] and it was shown that the capacity results are a function of the
(c, f) assignment (under the Protocol Model of interference) for the channel-to-interface rati&. It was also shown that in the random
regimec = O(logn) (2 < f < ¢) is O(W nli’(r)rgn) by presenting a network case, there are three distiv\?ct capacity regions: vhen

o ¢
capacity-achieving lower bound construction. It can be shown that O(logn), the per-flow capacity S ogn’ wheng; = Q(logn) and
2 2
Pmd > 1— e .. Thus, the somewhat surprising implication of this ~ also O <n ("’%E’rﬁ’”) ) the per flow capacity i©(W,/m), and
result is that wherf = Q(,/c), random(c, f) assignment yields ca- 5
pacity of the same order as attainable via unconstrained switching.when & = 0 <n (M) , the per-flow capacity i©( Y 1oglogn )

Hence,/c-switchability is sufficient to make order-optimal use of o ogn i ) ) clogn )
all c channels. Connectivity and capacity of multi-channel wireless networks with

Interestingly, our capacity achieving routing/scheduling proce- channel switching constraints were considered in [3]. Results were

dure requires that all routes be computed in lock-step. This leavesPresented for two specific constraint models, viz., adjacertt)
open the question of whether capacity can be achieved via asyn-@Ssignment and randofo, f) assignment. It was shown that when
chronous routing/scheduling procedures. ¢ = O(logn), capacity with adjacentc, f) assignment scales as

e(w,/m;ﬁ). For random(c, f) assignment, it was shown that

2. NOTATION AND TERMINOLOGY

Throughout this paper, we use the following standard asymptotic

notation [4]: show that the capacity for this model is actuaigw nﬁ)’gn).

capacity isSOW, /P19 ) and Q(W,/=<—). In this paper, we

nlogn cnlogn

e f(n)=0(g(n)) means thafic, Ny, such that
f(n) <cg(n) forn> N,

5. RANDOM (c, f) ASSIGNMENT

In this section we briefly describe the randdmf) assignment

o f(n) =o0(g(n)) means that Iimég—::; =0 model firstintroduced in [3, 1], and summarize some already proven
e results that will be useful in proving the lower bound on capacity.
o f(n) =w(g(n)) means thag(n) = o(f(n)) In this assignment model, a node is assigned a subdetiwdinnels
uniformly at random from the set of all possible channel subsets of
e f(n) =Q(g(n)) means thag(n) = O(f(n)) size f. Thus the probability that two nodes share at least one chan-
o f(n) = O(g(n))means thaficy, ¢, No, such that nel is given bypmg =1 - (1__%)(1f 1) (1= =ps7)- The
c1g(n) < f(n) < cpg(n) forn> No proofs of the following are available in [1], and also [2]:
Whenf (n) = O(g(n)), any functiorh(n) = O( f (n)) is alsoO(g(n)). LEMMA 1. Forc>2and2 < f <c, the following holds:
We often refer to such a situation @) = O(f(n)) = O(g(n)). CPmnd _ min{E 21} B
As in [7], we say that the per flow network throughpuhis) if f - f’
each flow in the network can be guaranteed a throughput of at least
A(n) with probability 1, asn — . LEMMA 2. min{$,2f} < v2c
Whenever we use log without explicitly specifying the base, we
imply thenatural logarithm. 5.1 Sufficient Condition for Connectivity

It was stated and proved in [3] that, for randdm f) assign-
ment, if rr2(n) = 8%9U99N then the network is connected w.h.p.

3. NETWORK MODEL
Prnan ’

We consider a network of single-interfacenodes deployed uni- \we summarize the proof idea here, to provide important context
formly at random over a unit torus. Each node is the source of for the results in this paper.

exactly one flow. As in [7], each sour&selects a destination by The unit torus is divided into square cells of agga) = 100logn
first fixing on a poinD’ uniformly at random, and then picking the ogn ~ Pman
nodeD (other than itself), that is closestBS. The total bandwidth It can be shown that there are at |E§%!F nodes in each cell
(data-rate) available M/, and it is divided intac channels of equal  w.h.p. r(n) is set to,/8a(n). Within each Ce”’ZF')O%ﬂ nodes are
1 W . ., i .
bandwidth's, wherec = O(logn). We assume that> 2, asc = 1 chosen uniformly at random, and set apartrassition facilitators

implies thatf = 1 is the only possibility, which yields the degener-
ate single-channel case. We also assuref2< c. A justification
for not allowing f = 1 for ¢ > 2 is given in [3], [1], where it was
shown that for the randote, f) model (and also the adjaceat f)
model described in [3])f = 1 andc > 2 leads to zero capacity, as
some flow will get no throughput w.h.p.

At IeastA%'r:f” nodes remain in each cell, and they acbaskbone
candidates

Consider any node in any given cell. The probability that it
can communicate to any other random node in its ranggis.
Then the probability that in some adjacent cell, there is no back-
bone candidate node with which it can communicate is less than

48logn

(1= Prng) " < g = 15- Applying union bounds over all 8
4. RELATED WORK adjacent cells of a node, and alhodes, the probability that at least

It was shown by Gupta and Kumar [7] that, for a single-channel gne node is unable to communicate with any backbone candidate

single-interface scenario, the per flow capacity in a random net- node in at least one of its adjacent cells is at t
work scales a®)( \/m%) bits/s. The throughput-delay trade-off Associated with each node there is a set of hodeB(x) called

was studied in [6], and it was shown that the optimal trade-off the backbone fok. B(x) is constituted as follows: Cells already

is given byD(n) = ©(nT(n)) whereD(n) is delay, andT (n) is covered by the backbone are referred tdibed cells. x is by de-
throughput. In the multi-channel context, an interesting scenario fault a member of8(x), and its cell is the firsfilled cell. From each
arises when the number of interfacast each node may be smaller  adjacent cell, amongst all backbone candidate nodes sharing at least
than the number of available channeld his issue was analyzedin  one common channel witk one is chosen uniformly at random is




added toB(x). Thereafter, from each cell bordering a filled cell, Communication Probability with Constrained Switching

of all nodes sharing at least one common channel with some node

already inB(x), one is chosen uniformly at random, and is added to

B(x); the cell gets added to the set of filled cells. This process con-

tinues, till all cells are filled. Based on previous argumemts)

eventually covers all cells with probability at Ieast]r%. For any

node-pairx andy, if B(x) N B(y) # @ the two are obviously con-

nected. Suppose the two backbones are disjoint. kteerdy are

still connected if there exists a cell where the membeBf) (let

us call itgy) can communicate with the member 8{y) in that

cell (let us call itgy), either directly, or through a third node ax

andgy can communicate directly with probability 1 if they share a

common channel. Thus the case to handle is that where no cell has

ax andgy sharing a channel. o9 o5 1
If they do not share a common channel, consider the event that fic

there exists a third node amongst thansition facilitatorsin the

cell through whom they can communicate. Thus, the overall prob-

ability can be lower-bounded by obtaining for one cell the probabil-

ity of gx andgy communicating via a third node given they have  jnq f from 2 toc) depicting how the probabilitpy,g compares with

Max. Prob. Wigh Adjacent (c, f) Assignment
Random (c, f) Assignment -------

12 1
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Figure 1: Comparison of probability of sharing a channel

no common channel, considering that each cell has at ﬁ%%%ﬁ the probabilitypgdasz min{%,l}. Recall thatprg is the prob-
possibilities forz, and treating it as independent across cells. This gpjlity that two nodes share at least one channel in ranftor)
is elaborated further. assignment, and;{is the upper bound on the probability that two

Consider a third node amongst the transition facilitators in the
same cell ag andgy. Consider a situation whemenumerates its
f channels in some uniformly random order, and then inspects the

first tvxao chharllnels, ﬁhfﬁk'qﬁ whethe:jthe f'.rSt One s cor.r;?r(]).n with obtained via the random assignment model lead to a much quicker
G, and checking whether the second one 1S common gyt his convergence ofyng toward 1. The results in [3] established that

- 2 .
probability is (%) (é) > 2—2 Thusqy andgy can communicate connectivity was the dominant constraint determining capacity for
adjacent(c, f) assignment in the = O(logn) regime. The lower

nodes share at least one channel in adjag@erfiy assignment [3]. It
is quite remarkable that though both models allow nodes to switch
between a subset df channels, the additional degrees of freedom

throughz with probability p, > g = Q(-L-). There are2l"

e o log®n ) Prna bound in this paper for randof, f) assignment matches the upper
p935|bllltles forz Wlthln that cell, and all the pgs&bbnodes have bound imposed by the connectivity constraint (see [3, 1]). Thus, the
i.i.d channel assignments. Thus, the probability ﬂ}alndCIySan' quick convergence ofyng to 1 leads to a quicker convergence of
not communicate through arin the cell is at mosf1 — pz)ﬁ, capa_lcity towards that attainable via unconstrained swit(_:hing. _

. . 2logn It is to be noted that the lower bound of [3] was obtained using
and the probability they can do sopigy > 1 — (1 — pz) "nd . a much simpler construction than the one described in this paper.
Theregfter a_ppllcatlon of the union bound over all cells, and all 1hs the two constructions represent an interesting trade-off in ca-
node pairs suffices to prove the result. pacity versus scheduling/routing complexity.
6. SUMMARY OF OUR RESULTS 7. SOME USEFUL RESULTS

In the rest of this paper, we describe a construction that achieves

a per-flow throughput of2(W npénéjn) for ¢ = O(logn). In light THEOREM 1. (Chernoff Upper Tail Bound [10]) Let %..., X,

be independent Poisson trials, where[Rr= 1] = p;. Let X=
of the upper bound o®(W, /2 ) proved in [3], this establishes gxi. Then, for0 < B < 1:
5 <

nlogn
. . . i=
the capacity for randonic, f) assignment a®(W, / n?é"éjn) in the 5
regimec = O(logn). It is easy to see the following: PriX > (14+B)E[X]] < exp(—EE[X]) (3
f f f
—1-_(1— — - - (1 —X
Pnd=1—(1 C)(1 c—l)'“(l C7f+1) o LEMMA 3. Forall0<x<1:(1-x)<e™
2

LEMMA 4. Suppose we are given a unit torus with n points
(or nodes) located uniformly at random, and the region is sub-

Hence: f = Q(\/6) — prma = Q(1). To illustrate, if we set Clh(;/olud(e)d into axis-parallel square cells of are@m each. If gn) =

[
f =/C pma > 1— 2 > 3. Inlight of Egn. (2), our result implies 2", 1< a(n) < gogiegy. then each cell has at lea&t00u (n) —
that f = Q(+/C) suffices for achieving capacity of the same order as 50) logn, and at mos{100u(n) 4-50) logn points (or nodes), with
the unconstrained switching case [9]. Fo= /c, the previously high probability.

. f .
established lower bound @ (W / gegr ). Would have yielded a LEMMA 5. Suppose we are given a unit torus with n points

capacity degradation by a factor of the ordercaf compared to (or nodes) located uniformly at random. Let us consider the set
the unconstrained switching case. In general, one may see that thef @l circles of radius R and area (A) = iR” on the unit torus.

f f _ e
>1-(-)fz1-et

[ .
capacity may diverge from the previous lower bound wer: 0, If A(n) = %{:)Ogn, 1< a(n) < 1ogjegy: then each circle has at
but f — co. least(1000(n) — 50) logn, and at mos¢100u (n) + 50) logn points

Fig. 1 is a numerical plot (obtained by settiagp 10%, and vary- (or nodes), with high probability.



LEMMA 6. If n pairs of points(R, Q;) are chosen uniformly at
random in the unit area network, the resultant set of straight-line
formed by each pair L= P Q; satisfies the condition that no cell
has more than gy/a(n) lines passing through it.

THEOREM 2. (Hall's Marriage Theorem [8], [11]) Given a set
S, letT ={71,7,...7} be afinite system of subsetssofThenT

possesses a system of distinct representatives if and only if for each

kin1,2 ...n, any selection of k of the sefswill contain between
them at least k elements §f Alternatively stated: for alla C T,
the following is true:;u4| > | 4]

LEMMA 7. The number of subsets of size k chosen from a set of
m elements is given k) < (ﬁ"f)k

THEOREM 3. (Integrality Theorem [4]) If the capacity function
of a network flow graph takes on only integral values, then the max-
imum flow x produced by the Ford-Fulkerson method has the prop-
erty that|x| is integer-valued. Moreover, for all vertices u and v,
the value of fu,v) is an integer.

8. LOWER BOUND ON CAPACITY

Alower bound ofQ(W, / W) for capacity with randongc, )
assignment was proved in [3, 1]. From Lemma 1, it follows that

/[ f /
cnlogn cn\ogn

Pt i o = Q(1), and the con-

struction presented in [3] (details in [1]) is asymptotically optimal.
Thus, we propose to use this construction for. 100 to achieve
capacity.

We now present a construction that achief¢¥/
f > 100 (thus necessarily> 100).

=Q(X +). Thus forf <100,

Prnd

Alogn) When

Traffic-model related resultswe first state some results for
the traffic model of [7] (which is also used in this paper). For
proofs, please see [2].

LEmMMA 8. The number of flows for which any node is the des-
tination is O(logn) w.h.p.

LEMMA 9. For large n, at least one node is the destination for
Q(logn) flows with a probability at leas§ (1 - 1)(1- &), where
0> Ois an arbitrarily small constant.

Subdivision of network region into cellgve use a square
cell construction (similar to that used in [6], and subsequently in
[9], [3])- The surface of the unit torus is divided into square cells
of areaa(n) each, and the transmission range is set8a(n),
thereby ensuring that any node in a given cell is within range of
any other node in any adjoining cell. Since we utilize Bretocol
Model[7], a node C can potentially interfere with an ongoing trans-
mission from node A to node B, only BC < (1+A)r(n). Thus, a
transmission in a given cell can only be affected by transmissions
in other cells within a distanc@+ A)r (n) from some point in that
cell. SinceA is independent o, the number of cells that interfere

with a given cell is only some constant (SRl
We choosea(n) = W = @(%) (sincec = O(logn)).
Then the following holds:

LEMMA 10. Each cell has at Ieasm w and
at mosthas(n) _ SOOm;:iLogn,c}

nodes w.h.p.

PROOF The proof has been omitted due to space constraints.
Please see [2]. [

Many of the intermediate results in the rest of this paper assume
that the high-probability event of Lemma 10 holds.
We also state the following facts:

% <Pnd <1 4)
For largen, sincec = O(logn), and 2< f < c¢:
f(n) = O(na(n)) — f(n) = O(LE‘(”)) (5)
f(n)=0(——) — f(m =02y (g
a(n) c

Some properties ofDD routing. Recall that we use the
traffic model of [7], where each sour&first chooses a pseudo-
destinatiorD’, and then selects the noBenearest to it as the actual
destination. In [7], the rout8 DD was followed, whereby the flow
traversed cells intersected by the straight Bi#, and then took an
extra last hop if required. In our case, it may not always suffice to
useSDD routing (we elaborate on this later). However, this is still
an important component of our routing procedure, and so we state
and prove the following lemmas (similar results were stated in [1])
for SDD routing:

LEMMA 11. Given only straight-line SDouting (no additional
last-hop), the number of flows that enter any cell on their i-th hop

is at mosth%i(”)J w.h.p., for any i.

PROOF. Let us consider the straight-line p&8D of an SDD
route. Thus all the SO lines are i.i.d. Denote by the indicator
variable which is 1 if the flovk enters a celD on itsi-th hop. Then,
as observed in [6] (proof of Lemma 3), for i.i.d. straight lines, the
Xs are identically distributed, ang* andX; are independent for
k # . However for a given flovk, at most one of th&K’s can be

1 as a flow only traverses a cell once. THerX* = 1] = a(n) =
250maxlogn,c}
PrndN ’

LetX = Z )(Ik ThenE[X;] = na(n). Also, for a giveri, thexX’s

are mdependent [6]. Then by application of the Chernoff bound
from Thereom 1 (with3 = 4)

[x.] E[X] EX,
48

PrX > 1250 n;zil:g n, c}} @
250maxlogn,c}

48prmd

PriX > ——] <exp(—

j< L

n5
The maximum value thatcan take is—2— =

2np
/a(n) \V 250ma>(|ogn c} <

n. Also the number of cells 'SW < n. Then by application
of union bound over all, and all cells?D, the probability that
X > EX is less tha%, and thus the number of flows that en-
ter any ceII on any hop is less théﬁi(— = %ﬂognc} with
probability at least 1 n—13 Resultantly, since&; is an integer, we

can say that it is at mo$t5r'Ta(”)J w.h.p. O

<

exp(—



LEMMA 12. The number of flows for which any single node is
the destination is (ha(n)) w.h.p.

PROOF The proof has been omitted due to space constraints.

Please see [2].[]

LEMMA 13. If a node is the destination of some flow, then that
flow’s pseudo-destination must lie within either the same cell, or
an adjacent cell w.h.p.

PROOF The proof has been omitted due to space constraints.

Please see [2].[]

LEMMA 14. The number of SID routes that traverse any cell
is O(ny/a(n)) w.h.p.

PROOF The proof for this lemma is largely based on a proof

For a set of nodes3, defineC(B) = {j|j proper in D and3u €
B capable of switching on}j If f > 100, the following holds w.h.p.:

i f
V channels jvB C W such thaiB| = [ n:‘é”)

3c
15 [c®) 25
This is true for all cellsD.

PROOF The proof has been omitted due to space constraints.
Please see [2].[J

8.1 Routing and channel assignment

Partial BackbonesAs mentioned earlier, the routing strategy
is based on a per-node backbone structure similar to that used to

in [6]. It has been omitted due to space constraints. Please seeProve the sufficient condition for connectivity in [3]. However;

2. O

stead of constructing a full backbone for each node, only a partial
backboneBp(x) is constructed for each node Bp(x) only covers

Having stated and proved these lemmas, we now establish somehose cells which are traversed by flows for whidls either source

properties of the spatial distribution of channels, and thereafter de-
scribe our scheduling/routing procedure further:

DEFINITION 1. We define a term Mwhere M, = [ 2201 _
90f max{logn,c}
( CPrnd —I

Then the following holds:

LEMMA 15. If there are at Ieastw nodes in every

cell, of which we choosew nodes uniformly at ran-
dom ascandidatedo examine, then in each cell, amongst those
%Lognc} candidatenodes, at least e L | channels have at
least M, nodes capable of switching on them, w.h.p.

PROOF The proof has been omitted due to space constraints.
Please see [2].[]

Similar to the construction for connectivity from [3] that we
briefly summarized in Section 5.1, we will construct a backbone for
each nodeHowever, since our concern is not merely connectivity

or destination. A flow first proceeds along the route on the source
backbone and will then attempt to switch onto the destination back-
bone.

We shall explain the backbone construction procedure in detail
later. First we show how a flow can be routed along these back-
bones from its source to its destination.

LEMMA 18. Suppose a flow has source x and destination y.
Thus it is initially onBp(x) and finally needs to be afip(y). Then
after having traverse(f7 distinct cells (hops) (recall th& < f <c
and c= O(logn)) , it will have found an opportunity to make the
transition w.h.p. If the routes of each of the n flows get to traverse at
Ieast distinct cells (note that each individual route needs to tra-

verse at least so many distinct cells; two different flows may have
common cells on their respective routes), then all n flows are able
to transition w.h.p.

PrROOF Consider a flow traversing a sequence of dalisD»;, ....
Then if the representative @f,(x) (let us call itgy) in Dj can com-

but also capacity, these backbones need to be constructed carefullymunicate (directly or indirectly) with the representative Bj(y)

to ensure that no bottlenecks are formed

Conditioning on Lemma 10, there are at Ie%\qsqm nodes
in each cell w.h.p. Initially, from each cell, we choo@@w
nodes uniformly at random dsackbone candldatesThe remaln-

ing nodes (which are at Iea%—?% in number) are deemed
transition facilitators

DEFINITION 2. (Proper Channel channel iis deemegroper
in cell D if it occurs in at least M backbone candidate nodesdn

LEMMA 16. For each cell of the network, the following is true
w.h.p.: if the number gbroperchannels in the cell is’cthen ¢ >
f
c—lzl>c—§1>TF1> %
PROOF The proof follows from Lemma 10 and Lemma 15.]
Besides, we can also show the following:

LEMMA 17. 1 Consider any celtd. Let % be the set of all
nodes in the 8 adjacent celiB(k),1 < k < 8, that are capable of
switching on channel i.

1This can be viewed as a special variant of the Coupon Collector’s cells is at mos(l — Pxy) ?

problem [10], where there are different types of coupons, and
each box has a random subsetfadifferent coupons. Some other

(let us callitgy) in Dj, it is possible to switch fronBp(x) to By(y).

If ax andqy share a channel this is trivial. ¢f anday do not share

a channel, we consider the probability that the two can communi-
cate via a third node from amongst ttransition facilitatorsin D;,

i.e. there exists a transition facilitatarsuch thatz shares at least
one channel witlgx and one channel witly. In Section 5.1, we
summarized a proof from [3] showing that andqy can communi-

cate through a givenwith probability p; > =Q( iog? n) Given
our choice of cell area(n), and conditioned on the fact that each
cell hasw nodes (Lemma 10), of whicﬁmmﬁw
are deemedbackbone candidatesnd the rest argransition facil-
itators, there are at least é@a’(ﬂ(’% > 2%'09” possibilities forz

within that cell. All the possible nodes have i.i.d. channel assign-
ments. Thus, the probability thgk and qy cannot communicate

20logn
through anyzin the cell is at most1— p;) o , and the probabil-

20logn
ity they communicate through soraés pyy > 1— (1 — p;) Pma .

Hence, the probability that this happens in none of%éndistinct

20(:2 logn 20c2 logn

(l pZ) 2P < (17 —2) 2Pmg <

__20logn
e Pnd < n20 (from Lemma 3). Applying the union bound over all

somewhat different variants having multiple coupons per box have n flows the probability that all flows are able to transition is at least

been considered in work on coding, e.g., [5].

O

ls-



Figure 2: lllustration of detour routing

Hence, we require each route to have at Iéésdistinct hops
(note that this is not a tight bound on the minimum number of
required hops). Resultantly, we cannot stipulate #ikaflows be
routed along the (almost) straight-line p&BD. If SDD is short,

D) e D(2) DB)
° L) L)
° .
® [ ]
° [ ]
L ° Previous hop backbone nod®
prev. hop for at most 14 entgyin;
backboneb in step k
Incomin 4
PE) o | D) bR
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Figure 3: Cell D and neighboring cells during backbone con-
struction

a detour may be required to ensure the minimum route-length, akin Backbone Constructiorthe backbone construction proce-

to detour-routing in the constructions of [3]. Such flows are said to
bedetour-routed

Flow Transition StrategyAs per our strategy, a non-detour-
routed flow is initially in aprogress-on-source-backbom®de, and

keeps to the source backbone till there are (ﬁglyiistinct interme-
diate cells left to the destination. At this point, it enteready-for-

transitionmode, and actively seeks opportunities to make a transi- {he destinationx is by default a member @By (X)
tion to the destination backbone along the remaining hops. Once it

dure is required to take load-balancing into account. Thus we can
describe the procedure for constructing the backbBgie) of x as
follows:

Given a cellD, the 8 cells adjacent to cefb are denoted as
D(j),1 <] <8 (Fig. 3). Bp(x) is constituted as follows. Let
S U Dy, be the subset of cells that must be coveredsgyx) where
S comprises cells traversed by the flow for whixlis the source,
and Dy, comprises the cells traversed by flows for which it may be

We consider backbone construction for the route from each source

has made the transition into the destination backbone, it proceedsy jts pseudo-destination below. Some routes require an additional
towards the destination on that backbone along the remaining part|ast hop to reach the actual destination node. However, from Lemma

of the route, and is thus guaranteed to reach the destination.

Thus, we stipulate that the (almost) straight-lBE'D path be
followed if the straight-line route comprisés> % distinct inter-
mediate cells (hops). BandD’ (hence alsd) lie close to each
other, the hop-length of the straight line cell-to-cell path can be
much smaller. In this case, detourpath SPOD is chosen (Fig.
2), using a circle of radiu%r(n) in a manner similar to that in
the constructions described in [3, 1] (consider a circle of this radius
centered aroun®, choose a poinP on the circle, and follow the
route SPOD).

A detour-routed flow is always iready-for-transitionmode.

The need to perforrdetourrouting for some source-destination

pairs does not have any substantial effect on the average hop-lengt

of routes or the relaying load on a cell, as we show further.

LEmMA 19. If the number of flows in any cell is x in case of
2

pure straight-line routing, it is at most ¥ O(m) = X+
O(Iog6 n) w.h.p. in case of detour routing.

PROOF The proof has been omitted due to space constraints.
Please see [2]. [

LEMMA 20. The number of flows traversing any cell i§rQ/a(n))
w.h.p. even with detour routing.

PROOF The proof has been omitted due to space constraints.
Please see [2].[]

LEMMA 21. The number of flows traversing any cellready-
for-transitionmode is @log® n) w.h.p.

PROOF The proof has been omitted due to space constraints.
Please see [2].[]

13, the only such last hop routes that may enter a cell correspond to
pseudo-destinations in the 8 adjacent cells. Then applying Lemma
4 to the set of pseudo-destinations, they are @pa(n)) such
pseudo-destinations, and thus ofyna(n)) such last-hop flows
entering the cell. Hence we can account for them separately.

Expanding backbones o

We first cover cells irs. Recall that we are only constructing the
SD part and not considering the possible additional last hop at this
stage.

This has two sub-stages. In the first stage, we construct back-
bones for source nodes whose flow does not require a detour. In the

ysecond sub-stage we construct backbones for source nodee whos

flow requires a detour.

Straight-line backbones:

This step proceeds in a hop-by-hop manner for all non-detour-
routed flows in parallel (each of which has a unique soujce

Any cell of § in which there is already a node assignedjgx)
is called a filled cell. Thus initially’s cell is filled. We then con-
sider the cell inS that is traversed next by the flow. We consider
all nodes in that cell sharing one or more common channel xwith
This provides a number of alternative channels on which the flow
can enter that cell.

Let hmax be the maximum hop-length of any non-detour-routed
SD route. Thenhmax = O(\/ﬁ) and the procedure hd$max
steps. In stef, for each source nodewhose flow hak or more
hops, Bp(x) expands into the cell entered i flow on thek-th
hop. Each cellD performs the following procedure:

The backbones are extended by constructing bipartite graphs that
aid load-balance.



LEMMA 22. If f > 100, thenitis possible to devise a backbone
construction procedure, such that, after stegujof the backbone
construction procedure fos (for non-detour-routed flows), each

cell has C{n é’l(n)) incoming backbone links on a single channel,

Channel iy
vertices

and each node appears or(@@) (source) backbones, w.h.p. SetVC L Set N V)
PrROOF This proof assumes that the high probability events in
Lemma 10, Lemma 11, Lemma 16, and Lemma 17 occur.
We present an inductive argument. Recall that we are expand- Set £
ing backbones to cover cells i At each step of the (inductive) One vertex for each
construction, we first have a channel-allocation phase, followed by }j;‘;gkl‘;‘;ﬁ;‘;:;;‘;?“g
a node-allocation phaseWe prove that after stek of the back-
bone construction procedure, the following two invariants hold for
all cells of the network:

Channel iy
vertices

Channel i3

vertices

e Invariant 1: Each node is assigned at most 14 new incoming Chaanel ig-—;
backbone links during stép Thus after stef, it appears in

a total ofO(14k) = O(k) backbones.

H 5na(n) - Channel i
e Invariant 2: No more than =~ | new backbone links en-

ter the cell on a single channel during stepThus, in to-
tal O(Lz(m) incoming backbones (entering the cell) are as- Set P
signed (incoming links) on a single channel after &kep 4] vertices

for each proper channel

vertices

If the above two Invariants hold, then it is easy to see that after

hmax Steps, celtD will have no more thar?h’“axcna(n) =0o( (;a(n))
backbone links assigned to any single channel, and no node occurs

on more than 1hnay = O(—i-) = O(n\/ﬁ) backbones A backbone vertex is connected to all the vertices for the chan-
a(n) ¢ nels proper inD on which its previous hop node can switch (and
(from Eqn. (6)). . . . which are therefore valid channel choices for entering the Dil|
We prove that the Invariants hold, by induction, as follows: We show that there exists a matching that pairs each backbone ver-
If Invariant 1 holds at the end of stepk — 1, then Invariant 2 tex to a unique channel vertex, through an argument based on Hall’s
continues to hold after the channel-allocation phase of stek. marriage theorem (Theorem 2). Thus, we seek to show that for

If Invariant 2 holds after the channel-allocation phase of stefk, all ¥ C L, |AL(V)| > |V|, whereA((V) C 2 is the union of the
then Invariant 1 will continue to hold after the node-allocation neighk;or-'sets of aIIT/ertic’es . -

phase of stepk, and thus both Invariants 1 and 2 will hold at We first note the following:
the end of stepk.

Figure 4: Bipartite Graph for Cell D in stepk

Base Case: 3f 5na(n)J > 3f (Sna(n) _1) _ 15fna(n)  3f
Before the procedure begins, at step 0, each node is assigned to 4 ¢ 4 ¢ 4c 4 (8)
its own backbone, for which it is effectively the origin (and this can < 15fna(n)  3fna(n) < 29fna(n) (- na(n) > 250)
be viewed as a single backbone link incoming to this node from = 4 100 = 8¢ ’ =
an imaginary super-source). Thus after Step 0, Invariant 1 holds . . .
trivially, and Invariant 2 is irrelevant, and thus trivially true. Consider the following two cases:
Inductive Step: . 29fna(n) ;
Suppose Invariants 1 and 2 held at the end of ktef. Consider Case 1:]7] < =5 . Consider any set’ of backbone ver-
a particular cellD during stefk. tices such that?| < 29%:(”). Then, since there are at mqs}J
Let the number oproperchannels inD bec. From Lemma 16, non-proper channels in a cell, every previous hop node has at least

we know that/ > ¢c— L%J > % for each cell. Each flow that enters [%f] > % properchannel choices. For each proper channel there
ce:: @Ai? Step{‘ htﬁstafprevii)us hOPiEOde ig one of thﬁ 8 adjgcehnt are 3040 | > 500 _ 1 associated channel vertices. Thus we
cells. Also note that, from Lemma 16, each previous hop node has ) 3f (5nan) 29fna(n)
at Ieast[%] of cell D’s properchannels available to it as choices obtain thatl \[(V)| = 7 ( c 71) > g (from Eqn. 8).
(since it can switch orf channels of which at mos{t}] may be Thus|A(V)| > |V].
non-proper in celD).

Case 2: 7| > %. Now consider setd’ of size at least

Channel-Allocation.Construct a bipartite graph with two sets %. Note that since Invariant 1 held till end of stkp- 1, no

of vertices (Fig. 4); one set (callit) has a vertex correspondingto  more than 14 backbone links were assigned to any single node in
each of the (source) backbones that enter theZeét stepk. From kgla)(k) in stepk — 1.

Lemma 11, it proceeds that| < Sna(n) . The other set (call i
P o< 757 ( ) Intuitively, in order to show thaA\((7/)| > || for all such?/,

5na(n) 5na(n) . ;.
has| == | < =<~ vertices for each proper chanrieh cell D, we first state and prove the observation that if a channel overload
ie,|?| = C’LS”LC(”U. condition occurs, resulting i\ ()| < || for some?’, then the



overload must also manifest itself in somigannel-alignedsubset
(i.e. a subset where all flows have soommmorproper channel

available to them). Thus, to show that no overload condition occurs,

v e V. From the Integrality Theorem (Theorem 3), we can obtain
an integer-capacity flow that yields a matching of §iz&. Thus,
from Hall's marriage theorem (Theorem 20\ (V)| > | V] (else a

it suffices to show that no overload condition occurs in any of these matching of sizé?/| could not have existed). This yields a contra-
critical channel-aligned subsets, which can be shown using Lemmadiction. Thus there must exist a proper charinahds; C % such

17. The argument is formalized as follows:

Let U be the set comprising all sefg C £, such that all back-
bone vertices int; have channel associated with them (i.e., all
backbone vertices ift; havei available to them as a valid proper
channel choice for entering).

Claim (a). vue U %:

i proper inD
29fna(n)

a2 [ = |

N(U)| = | £]

Proof of Claim (a): We know thatW € 1} for somei that is
proper inD. Also, since no node can be the previous hop in step
k of more flows than those assigned to it in skep 1, and Invari-
ant 1 held after stef— 1, it proceeds that no previous hop node
is common to more than 14 entering backbone links. ALdte the
set of distinct previous hop nodes associated withThen|4| >

%4‘1” > 1%1(29f§:(n)) > fna(n + Tf(xn) > fn4aén) +1> [fnTa(n)]

(note thatm > 250f > 500> 112). Observe thafl thus con-
tains at least one subsBtsatisfying| 8| = [%‘h‘(”)}. Recognizing
that all members o2, and hence all members &, are capable
of switching on channél we can invoke Lemma 17 oA, to ob-
tain that whenf > 100, |C(8)| > [¥]. This yields: A((U) >

5 5 5 15n
wwm““J>w<n¢%m—) 3] (2 1) > 50

’—%-‘ > laﬂg(n) -3 (néaérg))) 1> 5na(n

>|L].

Claim (b). Consider aset’ C £. Then:

IN(V)| < |V| = Fi properinD, 5 C Vst :
29fna(n)

9)
8c 1

Sie Wand|S| > [

Proof of Claim (b): Supposg A\ (V)| < |7|. Let us denote by
Si C v the set of all backbone vertices i that are associated
with channei (i.e., have channélavailable as a valid proper chan-
nel choice for entering celD). Consider the bipartite sub-graph
G, induced by?” UA(V), and assign all edges unit capacity.
Construct the grapls,, U {s,t} where s is a source node having
a unit capacity edge to all verticasc 7/, andt is a sink node,
connected to each vertexe A () via a unit capacity edge. We
try to obtain a(s,t) flow g such that all edgegs,v) are saturated.
Each vertexv € ¥ sub-divides the unit of flow received from
equally amongst all edgés, u) outgoing from it. Since each ver-

tex has edges to vertices of at Ie%%tchannels this yields at least
ﬂ <M - 1) > ngna(n) edges (see Eqn. 8). Thus each v

contributes at mos&w units of flow to a vertexu € A(V),

i.e.,g(vu) < 29fna(n)' Hence no vertex € A((7) gets more than
h(u) = Z g(v u) = Zg}cr‘g(‘n) units of flow, wherei is the channel

correspondlng to verten. Resultantly, if|Si| < L%J for all
channels that are proper in celD, this implies that(u) < 1, and
settingg(u,t) = h(u) yields the desireds,t) flow. Henceg is a
valid flow that allows a unit of flow to pass through each vertex

that$ € 94 and|S$j| > [%y Since set-cardinality must nec-

essarily be an integer, it proceeds that > [%‘fm)}, and Eqgn.
(9) holds.

Claim (). v# C £ such thatv| > 21080 |a(9))| > ||

Proof of Claim (c): SupposdA (V)| < |V| for some suchV/.
Then, from Claim (b), there exists a s&tC ¥ such that§; € U,
and|Si| > [%1 Thuss; qualifies as a set to which Claim (a)
applies. Invoking Claim (a) on this s&t, it follows that| A((7)| >
|9\[(5.)\ >|L| > |¥)|. Thisyields a contradiction. Hencg\ (V)| >

V.

Therefore, by application of Hall's marriage theorem (Theorem
2), each backbone vertex can be matched with a unique channel
vertex, and the corresponding backbone will be assigned to the
channel with which this vertex is associated. Thus all backbones
get assigned a channel, and (since there are at | chan-

nel vertices for each proper channel) no more th%ﬂ%@j incom-
ing backbone links are assigned to any single channel.

While Hall's marriage theorem proves that such a matching ex-
ists, the matching itself can be computed using the Ford-Fulkerson
method [4] on a flow network obtained from the bipartite graph by
adding a source with an edge to each verteXjra sink to which
each vertex in? has an edge, and assigning unit capacity to all
edges.

Thus Invariant 2 continues to hold after the channel-allocation
phase of stek.

Node-Allocation.Having determined the channel each back-
bone should use to enter cdll, we need to assign a node in cell
D to each backbone. For this, we again construct a bipartite graph.
In this graph, the first set of vertices (call#t) comprise a vertex
for each backbone entering céllin stepk. The second set (call it
R) comprises 14 vertices for eablackbone candidateode in cell
D. Avertexxin F has an edge with a vertgxin R _iff the actual
backbone candidateode associated withis capable of switching
on the channel assigned to the backbone associated with xéntex
the preceding channel-allocation phase.

Each vertexx € F has degree at least ¥4, since it is assigned
to aproperchannel, which by definition has at le&é, representa-
tives in cellD, each of which has 14 associated vertice® inAlso

recall thatMy, = [ 2731, Once again we seek to show that for all
VI, NV = |V

Consider any set’ € ¥.

Since no channel is assigned more tkﬁéﬁ@J entering back-
bone links in this step, the vertices # are cumulatively associ-

ated with at leasin > s‘na(n‘ distinct proper channels. Since each

of these channels have at lebkt backbone candidateodes capa-
ble of switching on them, and any one node can only switch on up
to f proper channels, this implies that the number of nodes in cell

D cumulatively associated with these> Ls‘"ﬂ"l)J proper channels

91na(n)
is at Ieastf‘[’%J > W‘Lna(ﬁf > %'—;/5‘, and as each node has 14
vertices, it follows thata((V)| > 14 (91‘;”5') > 125V ),



Then invoking Hall’s Marriage Theorem again, each venex
F can be matched with a unique vertgx X, and the actual net-
work node associated withis deemed the backbone representative
for the backbone corresponding to vertein cell D (the match-
ing can again be computed via the Ford-Fulkerson method). Since
there are at most 14 vertices associated with a node, no node is
assigned more than 14 incoming backbone links in ktemd In- Figure 5: Two additional transition links for a flow lying wholly
variant 1 continues to hold after the node-allocation phase of step within the cell
k.
Thus we have shown that both Invariants 1 and 2 continue to hold B o
after stepk. the flow has already made a transition, arslithe shared channel
Hence after stepimax (Wherehmax < —2—), each cellD has betwee_n the de_stlnatlon backbone node@]n_l andD;
Vvan We first consider the flows that enter a celpiogress-on-source-
of hmaxrga(n)) — o(n\/g(n)) entering backbone links per channel, ~backbonemode, i.e., are proceeding on their source backbones. Re-
1 call that these are all non-detour-routed flows, since detour-routed
and each node appears Ghmax) = O( \/@) = O( flows are always imeady-for-transitionmode. Then the number

(from Eqn. (6)) source backbonesl_] of such flows that enter any cell on a single chann@@gﬁ)
from Lemma 22.

Detour backbonesFrom Lemma 19 the number of additional We now need to account for the fact that some of these flows
flows traversing a cell due to detour routing is ofylog®n), and may be m theready-for-transitionmode. From Lemma 21 there
each such flow will at most traverse the cell twice. Thus detour a€0(log°n) flows traversing any cell iready-for-transitiormode
flows do not pose any significant load-balancing issue at any cell, w.h.p. (recall that these include the detour-routed flows with their
and we can grow the backbonesrfor these flows in any man- repeat traversals counted separately, and the possible additional last
ner possible, i.e. by assigning links to any eligible node/channel D’D hop). Thus regardless of whether they are still on their source

(at least one eligible node is guaranteed to exist since, as a Consebackbone, or have already made the transition to their destination

6 -
quence of Lemma 16, each node can switch on at [e%s]tchan- ?ar_cnkb(t)l:e, nﬁ channel can have more tBelog”n) such flows en
nels that are proper in the next cell). enng the cetl. oo
Additional last hop:We now account for the possible additional Hence the number of flows entering on a single chanr@{ﬁ@) +

last hop that some flows may have, yielding an additional cefl in 6 ny/a(n)
(in addition to those traversed from source to pseudo-destination). O(log”n) = O(="z—) w.h.p. for each cell of the network.[]

We already argued that at moS{na(n)) = O(Ls‘m)) flows LEMMA 24. The number of flows that leave any cell on any

(from Eqn. (5)) enter any cell on their additional last hop. Thus, gingle channel is Or]\/a(ﬂ)) w.h.p.
even if their backbone links are assigned to the same channel/node, €

ny/a(n)
c

) ny/a(n) ) PrROOF Note that the flows that leave the cell, must then enter
we would still haveO(—"z—) flows per node and channel in any  gne of the 8 adjacent cells on that channel (as the corresponding

cell for theS stage. backbone link for a flow leaves the current cell, and enters an adja-
. cent cell). Thus, flows leaving the cell on a channel can be no more
Expanding backbone to, — . than 8 times the maximum number of flows entering a cell on any

In this stageBp(x) expands into the cells traversed by flows for
which x is the destination. Note that by our routing strategy a flow
will only attempt to switch to the destination backbone when it en-
tersready-for-transitionmode. From Lemma 21, the total number channel is alsm(@) w.h.p. O
of flows traversing a cell ineady-for-transitionmode isO(log® )
(counting possible repeat traversals), which is much smaller than

one channel, which has been established)@%— Vf(n)) in Lemma
23. Hence, the total number of flows leaving any cell on a single

LEmMMA 25. The number of additional transition links sched-
o(2V2a") Thus flows on their destination backbone do not pose uled on any single channel within any cell i€I@° n) w.h.p.

any major load-balance issues, and the backbones can be expanded
into cells of D, — $ by assigning links to any eligible node/channel.

PrROOF Recall the transition strategy outlined in the proof of
Lemma 18, whereby the flow locates a cell along the route where

8.2 Proving load-balance within a cell the source backbone nodg and destination backbone nogleare
We now show that no channel or interface bottlenecks form in connected through a third node This yields two additional links

the network when our described construction is used O — 2 andz — qy that lie entirely within the cell (Fig. 5). Note
’ that the number of flows performing this transition in the cell can be

Per-Ch | Load no more than the number of flows traversing the celidady-for-
er-Lhannei Loa transitionmode. From Lemma 21 there a@log®n) such flows
LEMMA 23. The number of flows that enter any cell on any traversing any cell w.h.p. In the worst case, we can count 2 addi-
. . m/am) tional links for each such flow as being all assigned to one channel.
single channel is 0="c—) w.h.p. The result proceeds from this observation.]

PrROOF A flow on route Dy, Dy, ..., Dj_1,Dj.... may enter a
cell Dj on a channel if (1) the flow is in progress-on-source-  Per-Node Load
backbonemode, or it is inready-for-transitionmode, but is yet to . .
find a transition into the destination backbone , amsithe shared LEmMA 26. The number of flows that are assigned to any sin-
channel between the source backbone nodég in and?j, or (2) gle node in any cell is GLS(T)) w.h.p.



PROOF A node is always assigned the single flow for which it flow gets aQ(c ﬁ’%‘n) fraction of the time. Moreover, each cell
is the source. A node is also assigned flows for which it is the desti-
nation, and from Lemma 8 there are at mbgh) = O(logn) such
flows for any node w.h.p. Besides, a node may be assigned flows
that are in theeady-to-transitionmode, for which it facilitates a ~ least ﬁﬂ;) (%) Q(cy ﬁll)%n) =Q( ﬁll%n)-
transition (if it is atransition facilitator node), or on whose desti- We thus obtain the following theorem:
nation backbone it figures. There @Blog®n) such transitioning
flows in a cell w.h.p. from Lemma 21. Thus a node can only have ~ THEOREM 4. When c= O(logn), and2 < f <c, the per-flow
O(log®n) such flows assigned. network capacity with randorft, f) assignment i®(W ﬁ%).

We now consider the flows orogress-on-source-backbomade
that do not originate in the cell. These nodes are on their source-g  CONCLUSION
ny/a(n)

)

C

gets at least one slot i3 slots, where is a constant, and each
channel has bandwidt%(. Thus each flow gets a throughput of at

backbone, and from Lemma 22, each node has at @OSt We have established the capacity of a random network with ran-
such flows assigned. Thus, the resultant number of assigned flowsgom (c, f) assignment, foc = O(logn), 2 < f <c. Our result

per node is D (n) +O(log® n)+O(n7Vf<n)) = O(nivf(n)). O indicates that capacity ®(W, / He). Thus, whenf = Q(y/c),
one can achieve capacity of the same asymptotic order as with un-
8.3 Transmission schedule constrained switching. There still remain some interesting open
i ] ) questions pertaining to the randdw f) model, in terms of what
As mentioned earlier, from the Protocol Model assumption, each g achievable via strictly asynchronous routing/scheduling. How-
cell can face interference from at most a constant nunbef ever, the results in this paper, along with prior results in [3], have

nearby cells. Th_us, if we consider the resultant cell-interference been able to demonstrate that it may be possible to achieve good
graph (a graph with a vertex for each cell, and an edge between two, o ,ghnut characteristics even when devices are subject to switch-
vertices if the corresponding cells can interfere with each other), it ing constraints. Designing practically feasible and efficient proto-

has a chromatic number at most-B. Hence, we can come Up s for networks of devices with constrained switching ability is
with a global schedule havingp unit time slots in each round. 4 an open and interesting problem domain.

In any slot, if a cell is active, then all interfering cells are inactive.
The next issue is that of intra-cell scheduling. We need to sched-
ule transmissions so as to ensure that at any time instant, there is atlo' REFERENCES
most one transmission on any given channel in the cell. Besides, we [1] V. Bhandari and N. H. Vaidya. Connectivity and Capacity of
also need to ensure that no node is expected to transmit or receive Multi-Channel Wireless Networks with Channel Switching
more than one packet at any time instant. Constraints. Technical Report, CSL, UIUC, January 2007.
We construct a conflict graph based on the nodes in the active [2] V. Bhandari and N. H. Vaidya. Capacity of Multi-Channel
cell, and its adjacent cells (note that the hop-sender of each flow Wireless Networks with Randofft, f) Assignment.

shall lie in the active cell, and the hop-receiver shall lie in one of Technical Report, CSL, UIUC, June 2007.

the adjacent cells, except for transition links, for which both lie in  [3] V. Bhandari and N. H. Vaidya. Connectivity and Capacity of
the active cell) as follows: we create a separate vertex for each flow Multi-Channel Wireless Networks with Channel Switching
for which a node in the cell needs to transmit data (we count repeat Constraints. IrlProceedings of IEEE INFOCOMchorage,
traversals or additional transition links as distinct flows for the pur- Alaska, May 2007.

pose of scheduling; these have been accounted for while bounding [4] T.H. Cormen, C. E. Leiserson, and R. L. Rivestroduction
the number of flows in a cell in previous lemmas). Since the flow to Algorithms MIT Press, 1990.

has an assigned channel on which it operates in that particular hop, [5] C. Fragouli, J. Widmer, and J.-Y. Le Boudec. On the Benefits
each vertex in the graph has an implicit associated channel. Be- of Network Coding for Wireless Applications. Kth

sides, each vertex has an associated pair of nodes correspondingto  |qternational Symposium on Modeling and Optimization in
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